t ਲਈ ਹਲ ਕਰੋ
t=-2\sqrt{69}i+2\approx 2-16.613247726i
t=2+2\sqrt{69}i\approx 2+16.613247726i
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-t^{2}+4t-280=0
ਵੇਰੀਏਬਲ t ਕਿਸੇ ਵੀ ਇੱਕ 0,4 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ t\left(t-4\right) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 4 ਨੂੰ b ਲਈ, ਅਤੇ -280 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-280\right)}}{2\left(-1\right)}
4 ਦਾ ਵਰਗ ਕਰੋ।
t=\frac{-4±\sqrt{16+4\left(-280\right)}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-4±\sqrt{16-1120}}{2\left(-1\right)}
4 ਨੂੰ -280 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-4±\sqrt{-1104}}{2\left(-1\right)}
16 ਨੂੰ -1120 ਵਿੱਚ ਜੋੜੋ।
t=\frac{-4±4\sqrt{69}i}{2\left(-1\right)}
-1104 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t=\frac{-4±4\sqrt{69}i}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{-4+4\sqrt{69}i}{-2}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-4±4\sqrt{69}i}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -4 ਨੂੰ 4i\sqrt{69} ਵਿੱਚ ਜੋੜੋ।
t=-2\sqrt{69}i+2
-4+4i\sqrt{69} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=\frac{-4\sqrt{69}i-4}{-2}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-4±4\sqrt{69}i}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -4 ਵਿੱਚੋਂ 4i\sqrt{69} ਨੂੰ ਘਟਾਓ।
t=2+2\sqrt{69}i
-4-4i\sqrt{69} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=-2\sqrt{69}i+2 t=2+2\sqrt{69}i
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-t^{2}+4t-280=0
ਵੇਰੀਏਬਲ t ਕਿਸੇ ਵੀ ਇੱਕ 0,4 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ t\left(t-4\right) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-t^{2}+4t=280
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 280 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{-t^{2}+4t}{-1}=\frac{280}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
t^{2}+\frac{4}{-1}t=\frac{280}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
t^{2}-4t=\frac{280}{-1}
4 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-4t=-280
280 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-4t+\left(-2\right)^{2}=-280+\left(-2\right)^{2}
-4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2 ਨਿਕਲੇ। ਫੇਰ, -2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
t^{2}-4t+4=-280+4
-2 ਦਾ ਵਰਗ ਕਰੋ।
t^{2}-4t+4=-276
-280 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(t-2\right)^{2}=-276
ਫੈਕਟਰ t^{2}-4t+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(t-2\right)^{2}}=\sqrt{-276}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t-2=2\sqrt{69}i t-2=-2\sqrt{69}i
ਸਪਸ਼ਟ ਕਰੋ।
t=2+2\sqrt{69}i t=-2\sqrt{69}i+2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}