x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{10}}{5}+4\approx 4.632455532
x=-\frac{\sqrt{10}}{5}+4\approx 3.367544468
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(3x-15\right)\left(x-2\right)-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 3,5 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3\left(x-5\right)\left(x-3\right), ਜੋ x-3,x-5,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}-21x+30-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
3x-15 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}-21x+30-\left(3x^{2}-21x+36\right)=10\left(x-5\right)\left(x-3\right)
3x-9 ਨੂੰ x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}-21x+30-3x^{2}+21x-36=10\left(x-5\right)\left(x-3\right)
3x^{2}-21x+36 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-21x+30+21x-36=10\left(x-5\right)\left(x-3\right)
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
30-36=10\left(x-5\right)\left(x-3\right)
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -21x ਅਤੇ 21x ਨੂੰ ਮਿਲਾਓ।
-6=10\left(x-5\right)\left(x-3\right)
-6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
-6=\left(10x-50\right)\left(x-3\right)
10 ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-6=10x^{2}-80x+150
10x-50 ਨੂੰ x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
10x^{2}-80x+150=-6
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
10x^{2}-80x+150+6=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6 ਜੋੜੋ।
10x^{2}-80x+156=0
156 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 150 ਅਤੇ 6 ਨੂੰ ਜੋੜੋ।
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 10\times 156}}{2\times 10}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 10 ਨੂੰ a ਲਈ, -80 ਨੂੰ b ਲਈ, ਅਤੇ 156 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 10\times 156}}{2\times 10}
-80 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-80\right)±\sqrt{6400-40\times 156}}{2\times 10}
-4 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-80\right)±\sqrt{6400-6240}}{2\times 10}
-40 ਨੂੰ 156 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-80\right)±\sqrt{160}}{2\times 10}
6400 ਨੂੰ -6240 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-80\right)±4\sqrt{10}}{2\times 10}
160 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{80±4\sqrt{10}}{2\times 10}
-80 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 80 ਹੈ।
x=\frac{80±4\sqrt{10}}{20}
2 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4\sqrt{10}+80}{20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{80±4\sqrt{10}}{20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 80 ਨੂੰ 4\sqrt{10} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{10}}{5}+4
80+4\sqrt{10} ਨੂੰ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{80-4\sqrt{10}}{20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{80±4\sqrt{10}}{20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 80 ਵਿੱਚੋਂ 4\sqrt{10} ਨੂੰ ਘਟਾਓ।
x=-\frac{\sqrt{10}}{5}+4
80-4\sqrt{10} ਨੂੰ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{10}}{5}+4 x=-\frac{\sqrt{10}}{5}+4
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(3x-15\right)\left(x-2\right)-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ 3,5 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3\left(x-5\right)\left(x-3\right), ਜੋ x-3,x-5,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}-21x+30-\left(3x-9\right)\left(x-4\right)=10\left(x-5\right)\left(x-3\right)
3x-15 ਨੂੰ x-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}-21x+30-\left(3x^{2}-21x+36\right)=10\left(x-5\right)\left(x-3\right)
3x-9 ਨੂੰ x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3x^{2}-21x+30-3x^{2}+21x-36=10\left(x-5\right)\left(x-3\right)
3x^{2}-21x+36 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-21x+30+21x-36=10\left(x-5\right)\left(x-3\right)
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x^{2} ਅਤੇ -3x^{2} ਨੂੰ ਮਿਲਾਓ।
30-36=10\left(x-5\right)\left(x-3\right)
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -21x ਅਤੇ 21x ਨੂੰ ਮਿਲਾਓ।
-6=10\left(x-5\right)\left(x-3\right)
-6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
-6=\left(10x-50\right)\left(x-3\right)
10 ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-6=10x^{2}-80x+150
10x-50 ਨੂੰ x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
10x^{2}-80x+150=-6
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
10x^{2}-80x=-6-150
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 150 ਨੂੰ ਘਟਾ ਦਿਓ।
10x^{2}-80x=-156
-156 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6 ਵਿੱਚੋਂ 150 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{10x^{2}-80x}{10}=-\frac{156}{10}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{80}{10}\right)x=-\frac{156}{10}
10 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 10 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-8x=-\frac{156}{10}
-80 ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-8x=-\frac{78}{5}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-156}{10} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-8x+\left(-4\right)^{2}=-\frac{78}{5}+\left(-4\right)^{2}
-8, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -4 ਨਿਕਲੇ। ਫੇਰ, -4 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-8x+16=-\frac{78}{5}+16
-4 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-8x+16=\frac{2}{5}
-\frac{78}{5} ਨੂੰ 16 ਵਿੱਚ ਜੋੜੋ।
\left(x-4\right)^{2}=\frac{2}{5}
ਫੈਕਟਰ x^{2}-8x+16। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-4\right)^{2}}=\sqrt{\frac{2}{5}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-4=\frac{\sqrt{10}}{5} x-4=-\frac{\sqrt{10}}{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{10}}{5}+4 x=-\frac{\sqrt{10}}{5}+4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}