ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-4\left(x+3\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -\frac{1}{2},\frac{1}{2} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4\left(2x-1\right)\left(2x+1\right), ਜੋ 1-4x^{2},4 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(-4x-12\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
-4 ਨੂੰ x+3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-12x+4x^{2}-72=-\left(2x-1\right)\left(2x+1\right)
-4x-12 ਨੂੰ 6-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-12x+4x^{2}-72=\left(-2x+1\right)\left(2x+1\right)
-1 ਨੂੰ 2x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-12x+4x^{2}-72=-4x^{2}+1
-2x+1 ਨੂੰ 2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-12x+4x^{2}-72+4x^{2}=1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x^{2} ਜੋੜੋ।
-12x+8x^{2}-72=1
8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ 4x^{2} ਨੂੰ ਮਿਲਾਓ।
-12x+8x^{2}-72-1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
-12x+8x^{2}-73=0
-73 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -72 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
8x^{2}-12x-73=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 8\left(-73\right)}}{2\times 8}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 8 ਨੂੰ a ਲਈ, -12 ਨੂੰ b ਲਈ, ਅਤੇ -73 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-12\right)±\sqrt{144-4\times 8\left(-73\right)}}{2\times 8}
-12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144-32\left(-73\right)}}{2\times 8}
-4 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{144+2336}}{2\times 8}
-32 ਨੂੰ -73 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-12\right)±\sqrt{2480}}{2\times 8}
144 ਨੂੰ 2336 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-12\right)±4\sqrt{155}}{2\times 8}
2480 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{12±4\sqrt{155}}{2\times 8}
-12 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 12 ਹੈ।
x=\frac{12±4\sqrt{155}}{16}
2 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4\sqrt{155}+12}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±4\sqrt{155}}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 12 ਨੂੰ 4\sqrt{155} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{155}+3}{4}
12+4\sqrt{155} ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{12-4\sqrt{155}}{16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{12±4\sqrt{155}}{16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 12 ਵਿੱਚੋਂ 4\sqrt{155} ਨੂੰ ਘਟਾਓ।
x=\frac{3-\sqrt{155}}{4}
12-4\sqrt{155} ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{155}+3}{4} x=\frac{3-\sqrt{155}}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-4\left(x+3\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -\frac{1}{2},\frac{1}{2} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4\left(2x-1\right)\left(2x+1\right), ਜੋ 1-4x^{2},4 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\left(-4x-12\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
-4 ਨੂੰ x+3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-12x+4x^{2}-72=-\left(2x-1\right)\left(2x+1\right)
-4x-12 ਨੂੰ 6-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-12x+4x^{2}-72=\left(-2x+1\right)\left(2x+1\right)
-1 ਨੂੰ 2x-1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-12x+4x^{2}-72=-4x^{2}+1
-2x+1 ਨੂੰ 2x+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-12x+4x^{2}-72+4x^{2}=1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x^{2} ਜੋੜੋ।
-12x+8x^{2}-72=1
8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x^{2} ਅਤੇ 4x^{2} ਨੂੰ ਮਿਲਾਓ।
-12x+8x^{2}=1+72
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 72 ਜੋੜੋ।
-12x+8x^{2}=73
73 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 72 ਨੂੰ ਜੋੜੋ।
8x^{2}-12x=73
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{8x^{2}-12x}{8}=\frac{73}{8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{12}{8}\right)x=\frac{73}{8}
8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{3}{2}x=\frac{73}{8}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-12}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{73}{8}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{3}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{73}{8}+\frac{9}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{3}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{155}{16}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{73}{8} ਨੂੰ \frac{9}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{3}{4}\right)^{2}=\frac{155}{16}
ਫੈਕਟਰ x^{2}-\frac{3}{2}x+\frac{9}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{155}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{3}{4}=\frac{\sqrt{155}}{4} x-\frac{3}{4}=-\frac{\sqrt{155}}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{155}+3}{4} x=\frac{3-\sqrt{155}}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{3}{4} ਨੂੰ ਜੋੜੋ।