ਮੁਲਾਂਕਣ ਕਰੋ
\frac{25299}{6440}\approx 3.928416149
ਫੈਕਟਰ
\frac{3 ^ {3} \cdot 937}{2 ^ {3} \cdot 5 \cdot 7 \cdot 23} = 3\frac{5979}{6440} = 3.928416149068323
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\frac{-7\left(-45\right)}{18}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
-\frac{7}{18}\left(-45\right) ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\frac{315}{18}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
315 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -7 ਅਤੇ -45 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{35}{2}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
9 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{315}{18} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{\frac{35}{2}+\frac{1}{6}\times 1}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
-1 ਨੂੰ 2000 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\frac{35}{2}+\frac{1}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
\frac{1}{6} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{1}{6} ਅਤੇ 1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{105}{6}+\frac{1}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
2 ਅਤੇ 6 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6 ਹੈ। \frac{35}{2} ਅਤੇ \frac{1}{6} ਨੂੰ 6 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{\frac{105+1}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
ਕਿਉਂਕਿ \frac{105}{6} ਅਤੇ \frac{1}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\frac{106}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
106 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 105 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{\frac{53}{3}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{106}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{\frac{53}{3}}{\left(-\frac{39+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
39 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 13 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{53}{3}}{-\frac{40}{3}\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
40 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 39 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{\frac{53}{3}}{-\frac{40}{3}\left(-1\right)-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
-1 ਨੂੰ 1009 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ -1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\frac{53}{3}}{\frac{40}{3}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
\frac{40}{3} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{40}{3} ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{53}{3}}{\frac{40}{3}-\left(-\frac{12+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{53}{3}}{\frac{40}{3}-\left(-\frac{15}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
15 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\frac{\frac{53}{3}}{\frac{40}{3}+\frac{15}{4}-\frac{5}{16}}+\frac{2\times 8+7}{8}
-\frac{15}{4} ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ \frac{15}{4} ਹੈ।
\frac{\frac{53}{3}}{\frac{160}{12}+\frac{45}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
3 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। \frac{40}{3} ਅਤੇ \frac{15}{4} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{\frac{53}{3}}{\frac{160+45}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
ਕਿਉਂਕਿ \frac{160}{12} ਅਤੇ \frac{45}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\frac{53}{3}}{\frac{205}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
205 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 160 ਅਤੇ 45 ਨੂੰ ਜੋੜੋ।
\frac{\frac{53}{3}}{\frac{820}{48}-\frac{15}{48}}+\frac{2\times 8+7}{8}
12 ਅਤੇ 16 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 48 ਹੈ। \frac{205}{12} ਅਤੇ \frac{5}{16} ਨੂੰ 48 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{\frac{53}{3}}{\frac{820-15}{48}}+\frac{2\times 8+7}{8}
ਕਿਉਂਕਿ \frac{820}{48} ਅਤੇ \frac{15}{48} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{53}{3}}{\frac{805}{48}}+\frac{2\times 8+7}{8}
805 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 820 ਵਿੱਚੋਂ 15 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{53}{3}\times \frac{48}{805}+\frac{2\times 8+7}{8}
\frac{53}{3} ਨੂੰ \frac{805}{48} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{53}{3}ਨੂੰ \frac{805}{48} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{53\times 48}{3\times 805}+\frac{2\times 8+7}{8}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{53}{3} ਟਾਈਮਸ \frac{48}{805} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2544}{2415}+\frac{2\times 8+7}{8}
\frac{53\times 48}{3\times 805} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{848}{805}+\frac{2\times 8+7}{8}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2544}{2415} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{848}{805}+\frac{16+7}{8}
16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{848}{805}+\frac{23}{8}
23 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 7 ਨੂੰ ਜੋੜੋ।
\frac{6784}{6440}+\frac{18515}{6440}
805 ਅਤੇ 8 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6440 ਹੈ। \frac{848}{805} ਅਤੇ \frac{23}{8} ਨੂੰ 6440 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{6784+18515}{6440}
ਕਿਉਂਕਿ \frac{6784}{6440} ਅਤੇ \frac{18515}{6440} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{25299}{6440}
25299 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6784 ਅਤੇ 18515 ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}