ਮੁਲਾਂਕਣ ਕਰੋ
\frac{3\sqrt{3}x\left(16-x\right)}{8}
ਫੈਕਟਰ
\frac{3\sqrt{3}x\left(16-x\right)}{8}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\sqrt{3}x}{4}\left(-\frac{3}{2}x+24\right)
\frac{\sqrt{3}}{4}x ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\sqrt{3}x}{4}\left(-\frac{3}{2}\right)x+24\times \frac{\sqrt{3}x}{4}
\frac{\sqrt{3}x}{4} ਨੂੰ -\frac{3}{2}x+24 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
\frac{-\sqrt{3}x\times 3}{4\times 2}x+24\times \frac{\sqrt{3}x}{4}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{3}x}{4} ਟਾਈਮਸ -\frac{3}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{-\sqrt{3}x\times 3x}{4\times 2}+24\times \frac{\sqrt{3}x}{4}
\frac{-\sqrt{3}x\times 3}{4\times 2}x ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{-\sqrt{3}x\times 3x}{4\times 2}+6\sqrt{3}x
24 ਅਤੇ 4 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 4 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{-\sqrt{3}x\times 3x}{4\times 2}+\frac{6\sqrt{3}x\times 4\times 2}{4\times 2}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 6\sqrt{3}x ਨੂੰ \frac{4\times 2}{4\times 2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{-\sqrt{3}x\times 3x+6\sqrt{3}x\times 4\times 2}{4\times 2}
ਕਿਉਂਕਿ \frac{-\sqrt{3}x\times 3x}{4\times 2} ਅਤੇ \frac{6\sqrt{3}x\times 4\times 2}{4\times 2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{-3\sqrt{3}x^{2}+48\sqrt{3}x}{4\times 2}
-\sqrt{3}x\times 3x+6\sqrt{3}x\times 4\times 2 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-3\sqrt{3}x^{2}+48\sqrt{3}x}{8}
4\times 2 ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}