ਮੁਲਾਂਕਣ ਕਰੋ
\sqrt{6}+3\approx 5.449489743
ਕੁਇਜ਼
Arithmetic
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\frac { \sqrt { 18 } - \sqrt { 12 } } { \sqrt { 50 } - \sqrt { 48 } }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{3\sqrt{2}-\sqrt{12}}{\sqrt{50}-\sqrt{48}}
18=3^{2}\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{3^{2}\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{3^{2}}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 3^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{50}-\sqrt{48}}
12=2^{2}\times 3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2^{2}\times 3} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2^{2}}\sqrt{3} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 2^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-\sqrt{48}}
50=5^{2}\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{5^{2}\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{5^{2}}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 5^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}}
48=4^{2}\times 3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{4^{2}\times 3} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{4^{2}}\sqrt{3} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 4^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ 5\sqrt{2}+4\sqrt{3} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{3\sqrt{2}-2\sqrt{3}}{5\sqrt{2}-4\sqrt{3}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{\left(5\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
\left(5\sqrt{2}-4\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{5^{2}\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
\left(5\sqrt{2}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\left(\sqrt{2}\right)^{2}-\left(-4\sqrt{3}\right)^{2}}
5 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 25 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{25\times 2-\left(-4\sqrt{3}\right)^{2}}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\sqrt{3}\right)^{2}}
50 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 25 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
\left(-4\sqrt{3}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\left(\sqrt{3}\right)^{2}}
-4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-16\times 3}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{50-48}
48 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\left(5\sqrt{2}+4\sqrt{3}\right)}{2}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 50 ਵਿੱਚੋਂ 48 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{15\left(\sqrt{2}\right)^{2}+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
3\sqrt{2}-2\sqrt{3} ਦੇ ਹਰ ਸ਼ਬਦ ਨੂੰ 5\sqrt{2}+4\sqrt{3} ਦੇ ਹਰ ਸ਼ਬਦ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਵਿਤਰਣ ਗੁਣ ਨੂੰ ਲਾਗੂ ਕਰੋ।
\frac{15\times 2+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{30+12\sqrt{3}\sqrt{2}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 15 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{30+12\sqrt{6}-10\sqrt{3}\sqrt{2}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰਕੇ, ਨੰਬਰਾਂ ਨੂੰ ਸਕ੍ਵੇਅਰ ਰੂਟ ਹੇਠਾਂ ਗੁਣਾ ਕਰੋ।
\frac{30+12\sqrt{6}-10\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
\sqrt{3} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰਕੇ, ਨੰਬਰਾਂ ਨੂੰ ਸਕ੍ਵੇਅਰ ਰੂਟ ਹੇਠਾਂ ਗੁਣਾ ਕਰੋ।
\frac{30+2\sqrt{6}-8\left(\sqrt{3}\right)^{2}}{2}
2\sqrt{6} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12\sqrt{6} ਅਤੇ -10\sqrt{6} ਨੂੰ ਮਿਲਾਓ।
\frac{30+2\sqrt{6}-8\times 3}{2}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{30+2\sqrt{6}-24}{2}
-24 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{6+2\sqrt{6}}{2}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 30 ਵਿੱਚੋਂ 24 ਨੂੰ ਘਟਾ ਦਿਓ।
3+\sqrt{6}
6+2\sqrt{6} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3+\sqrt{6} ਨਿਕਲੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}