ਮੁਲਾਂਕਣ ਕਰੋ
\frac{4p}{500-p}
ਵਿਸਤਾਰ ਕਰੋ
-\frac{4p}{p-500}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\frac{pN}{100}}{\frac{p}{100}N+\frac{5}{4}\times \frac{100-p}{100}N}
\frac{p}{100}N ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5}{4}\times \frac{100-p}{100}N}
\frac{p}{100}N ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5\left(100-p\right)}{4\times 100}N}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{5}{4} ਟਾਈਮਸ \frac{100-p}{100} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{-p+100}{4\times 20}N}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 5 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{\left(-p+100\right)N}{4\times 20}}
\frac{-p+100}{4\times 20}N ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{4pN}{400}+\frac{5\left(-p+100\right)N}{400}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 100 ਅਤੇ 4\times 20 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 400 ਹੈ। \frac{pN}{100} ਨੂੰ \frac{4}{4} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{\left(-p+100\right)N}{4\times 20} ਨੂੰ \frac{5}{5} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{4pN+5\left(-p+100\right)N}{400}}
ਕਿਉਂਕਿ \frac{4pN}{400} ਅਤੇ \frac{5\left(-p+100\right)N}{400} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\frac{pN}{100}}{\frac{4pN-5pN+500N}{400}}
4pN+5\left(-p+100\right)N ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{-pN+500N}{400}}
4pN-5pN+500N ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{pN\times 400}{100\left(-pN+500N\right)}
\frac{pN}{100} ਨੂੰ \frac{-pN+500N}{400} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{pN}{100}ਨੂੰ \frac{-pN+500N}{400} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{4Np}{-Np+500N}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 100 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{4Np}{N\left(-p+500\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{4p}{-p+500}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ N ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{p}{100}N+\frac{5}{4}\times \frac{100-p}{100}N}
\frac{p}{100}N ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5}{4}\times \frac{100-p}{100}N}
\frac{p}{100}N ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{5\left(100-p\right)}{4\times 100}N}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{5}{4} ਟਾਈਮਸ \frac{100-p}{100} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{-p+100}{4\times 20}N}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 5 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{pN}{100}+\frac{\left(-p+100\right)N}{4\times 20}}
\frac{-p+100}{4\times 20}N ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{4pN}{400}+\frac{5\left(-p+100\right)N}{400}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 100 ਅਤੇ 4\times 20 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 400 ਹੈ। \frac{pN}{100} ਨੂੰ \frac{4}{4} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{\left(-p+100\right)N}{4\times 20} ਨੂੰ \frac{5}{5} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{4pN+5\left(-p+100\right)N}{400}}
ਕਿਉਂਕਿ \frac{4pN}{400} ਅਤੇ \frac{5\left(-p+100\right)N}{400} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\frac{pN}{100}}{\frac{4pN-5pN+500N}{400}}
4pN+5\left(-p+100\right)N ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{pN}{100}}{\frac{-pN+500N}{400}}
4pN-5pN+500N ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{pN\times 400}{100\left(-pN+500N\right)}
\frac{pN}{100} ਨੂੰ \frac{-pN+500N}{400} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{pN}{100}ਨੂੰ \frac{-pN+500N}{400} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{4Np}{-Np+500N}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 100 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{4Np}{N\left(-p+500\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{4p}{-p+500}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ N ਨੂੰ ਰੱਦ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}