ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. a
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}}
\frac{a}{a^{2}-4} ਨੂੰ \frac{a^{2}}{a+2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{a}{a^{2}-4}ਨੂੰ \frac{a^{2}}{a+2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{a+2}{a\left(a^{2}-4\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{a+2}{a\left(a-2\right)\left(a+2\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{1}{a\left(a-2\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a+2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{1}{a^{2}-2a}
ਏਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਫੈਲਾਓ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}})
\frac{a}{a^{2}-4} ਨੂੰ \frac{a^{2}}{a+2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{a}{a^{2}-4}ਨੂੰ \frac{a^{2}}{a+2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a^{2}-4\right)})
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a-2\right)\left(a+2\right)})
\frac{a+2}{a\left(a^{2}-4\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a\left(a-2\right)})
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ a+2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}-2a})
a ਨੂੰ a-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-\left(a^{2}-2a^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-2a^{1})
ਜੇ F ਦੋ ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਾਰਜਾਂ f\left(u\right) ਅਤੇ u=g\left(x\right) ਦਾ ਸੰਯੋਜਨ ਹੈ, ਯਾਂਨੀ, ਜੇF\left(x\right)=f\left(g\left(x\right)\right), F ਦਾ ਡੈਰੀਵੇਟਿਵ u ਦੇ ਸਬੰਧ ਵਿੱਚ f ਦਾ ਡੈਰੀਵੇਟਿਵ ਗੁਣਾ x ਦੇ ਸਬੰਧ ਵਿੱਚ g ਦਾ ਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ, ਯਾਂਨੀ, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)।
-\left(a^{2}-2a^{1}\right)^{-2}\left(2a^{2-1}-2a^{1-1}\right)
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\left(a^{2}-2a^{1}\right)^{-2}\left(-2a^{1}+2a^{0}\right)
ਸਪਸ਼ਟ ਕਰੋ।
\left(a^{2}-2a\right)^{-2}\left(-2a+2a^{0}\right)
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।
\left(a^{2}-2a\right)^{-2}\left(-2a+2\times 1\right)
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
\left(a^{2}-2a\right)^{-2}\left(-2a+2\right)
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।