ਮੁਲਾਂਕਣ ਕਰੋ
\frac{1}{h^{2}}
ਅੰਤਰ ਦੱਸੋ w.r.t. h
-\frac{2}{h^{3}}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1}{hh}
\frac{\frac{1}{h}}{h} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{1}{h^{2}}
h^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ h ਅਤੇ h ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})+\frac{1}{h}\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{h})
ਦੋ ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਾਰਜਾਂ ਲਈ, ਦੋ ਕਾਰਜਾਂ ਦੇ ਗੁਣਨਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਪਹਿਲੇ ਕਾਰਜ ਦਾ ਦੂਜੇ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ, + ਦੂਜੇ ਕਾਰਜ ਦਾ ਪਹਿਲੇ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਹੁੰਦਾ ਹੈ।
\frac{1}{h}\left(-1\right)h^{-1-1}+\frac{1}{h}\left(-1\right)h^{-1-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
\frac{1}{h}\left(-1\right)h^{-2}+\frac{1}{h}\left(-1\right)h^{-2}
ਸਪਸ਼ਟ ਕਰੋ।
-h^{-1-2}-h^{-1-2}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ।
-h^{-3}-h^{-3}
ਸਪਸ਼ਟ ਕਰੋ।
\left(-1-1\right)h^{-3}
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
-2h^{-3}
-1 ਨੂੰ -1 ਵਿੱਚ ਜੋੜੋ।
\frac{\mathrm{d}}{\mathrm{d}h}(\frac{1}{1}h^{-1-1})
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਤਕਸੀਮ ਕਰਨ ਲਈ, ਡੀਨੋਮਿਨੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਐਕਸਪੋਨੈਂਟ ਵਿੱਚੋਂ ਘਟਾ ਦਿਓ।
\frac{\mathrm{d}}{\mathrm{d}h}(h^{-2})
ਗਿਣਤੀ ਕਰੋ।
-2h^{-2-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
-2h^{-3}
ਗਿਣਤੀ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}