ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{2b-a}{3b-a}
ਵਿਸਤਾਰ ਕਰੋ
-\frac{2b-a}{3b-a}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-b ਅਤੇ a+b ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(a+b\right)\left(a-b\right) ਹੈ। \frac{1}{a-b} ਨੂੰ \frac{a+b}{a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{3}{a+b} ਨੂੰ \frac{a-b}{a-b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
ਕਿਉਂਕਿ \frac{a+b}{\left(a+b\right)\left(a-b\right)} ਅਤੇ \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3\left(a-b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3a+3b ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। b-a ਅਤੇ b+a ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(a+b\right)\left(-a+b\right) ਹੈ। \frac{2}{b-a} ਨੂੰ \frac{a+b}{a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{4}{b+a} ਨੂੰ \frac{-a+b}{-a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
ਕਿਉਂਕਿ \frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} ਅਤੇ \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
2\left(a+b\right)+4\left(-a+b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
2a+2b-4a+4b ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ਨੂੰ \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}ਨੂੰ \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
-a+b ਵਿੱਚ ਨੇਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਕੱਢੋ।
\frac{-\left(-2a+4b\right)}{-2a+6b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(a+b\right)\left(a-b\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{-\left(-a+2b\right)}{-a+3b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{a-2b}{-a+3b}
ਏਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਫੈਲਾਓ।
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। a-b ਅਤੇ a+b ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(a+b\right)\left(a-b\right) ਹੈ। \frac{1}{a-b} ਨੂੰ \frac{a+b}{a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{3}{a+b} ਨੂੰ \frac{a-b}{a-b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{a+b-3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
ਕਿਉਂਕਿ \frac{a+b}{\left(a+b\right)\left(a-b\right)} ਅਤੇ \frac{3\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{a+b-3a+3b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3\left(a-b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2}{b-a}+\frac{4}{b+a}}
a+b-3a+3b ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। b-a ਅਤੇ b+a ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(a+b\right)\left(-a+b\right) ਹੈ। \frac{2}{b-a} ਨੂੰ \frac{a+b}{a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{4}{b+a} ਨੂੰ \frac{-a+b}{-a+b} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2\left(a+b\right)+4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}}
ਕਿਉਂਕਿ \frac{2\left(a+b\right)}{\left(a+b\right)\left(-a+b\right)} ਅਤੇ \frac{4\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{2a+2b-4a+4b}{\left(a+b\right)\left(-a+b\right)}}
2\left(a+b\right)+4\left(-a+b\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}}{\frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)}}
2a+2b-4a+4b ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(-2a+4b\right)\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
\frac{-2a+4b}{\left(a+b\right)\left(a-b\right)} ਨੂੰ \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{-2a+4b}{\left(a+b\right)\left(a-b\right)}ਨੂੰ \frac{-2a+6b}{\left(a+b\right)\left(-a+b\right)} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{-\left(a+b\right)\left(a-b\right)\left(-2a+4b\right)}{\left(a+b\right)\left(a-b\right)\left(-2a+6b\right)}
-a+b ਵਿੱਚ ਨੇਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਕੱਢੋ।
\frac{-\left(-2a+4b\right)}{-2a+6b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(a+b\right)\left(a-b\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{-2\left(-a+2b\right)}{2\left(-a+3b\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{-\left(-a+2b\right)}{-a+3b}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{a-2b}{-a+3b}
ਏਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਫੈਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}