ਮੁਲਾਂਕਣ ਕਰੋ
\frac{2\sqrt{2}-\sqrt{3}}{5}\approx 0.219275263
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{6}}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{2}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}}{1-\frac{1}{\sqrt{6}}}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{1-\frac{1}{\sqrt{6}}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{3} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{3}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}}{1-\frac{1}{\sqrt{6}}}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\frac{\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}}{1-\frac{1}{\sqrt{6}}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2 ਅਤੇ 3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6 ਹੈ। \frac{\sqrt{2}}{2} ਨੂੰ \frac{3}{3} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{\sqrt{3}}{3} ਨੂੰ \frac{2}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{1}{\sqrt{6}}}
ਕਿਉਂਕਿ \frac{3\sqrt{2}}{6} ਅਤੇ \frac{2\sqrt{3}}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{6} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{6}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{1-\frac{\sqrt{6}}{6}}
\sqrt{6} ਦਾ ਸਕ੍ਵੇਅਰ 6 ਹੈ।
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{\frac{6}{6}-\frac{\sqrt{6}}{6}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 1 ਨੂੰ \frac{6}{6} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{3\sqrt{2}-2\sqrt{3}}{6}}{\frac{6-\sqrt{6}}{6}}
ਕਿਉਂਕਿ \frac{6}{6} ਅਤੇ \frac{\sqrt{6}}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\times 6}{6\left(6-\sqrt{6}\right)}
\frac{3\sqrt{2}-2\sqrt{3}}{6} ਨੂੰ \frac{6-\sqrt{6}}{6} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{3\sqrt{2}-2\sqrt{3}}{6}ਨੂੰ \frac{6-\sqrt{6}}{6} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{-2\sqrt{3}+3\sqrt{2}}{-\sqrt{6}+6}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 6 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-\sqrt{6}+6\right)\left(-\sqrt{6}-6\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ -\sqrt{6}-6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{-2\sqrt{3}+3\sqrt{2}}{-\sqrt{6}+6} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-\sqrt{6}\right)^{2}-6^{2}}
\left(-\sqrt{6}+6\right)\left(-\sqrt{6}-6\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{\left(-1\right)^{2}\left(\sqrt{6}\right)^{2}-6^{2}}
\left(-\sqrt{6}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{1\left(\sqrt{6}\right)^{2}-6^{2}}
-1 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{1\times 6-6^{2}}
\sqrt{6} ਦਾ ਸਕ੍ਵੇਅਰ 6 ਹੈ।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{6-6^{2}}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{6-36}
6 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 36 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\left(-2\sqrt{3}+3\sqrt{2}\right)\left(-\sqrt{6}-6\right)}{-30}
-30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{2\sqrt{3}\sqrt{6}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
-2\sqrt{3}+3\sqrt{2} ਦੇ ਹਰ ਸ਼ਬਦ ਨੂੰ -\sqrt{6}-6 ਦੇ ਹਰ ਸ਼ਬਦ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ ਵਿਤਰਣ ਗੁਣ ਨੂੰ ਲਾਗੂ ਕਰੋ।
\frac{2\sqrt{3}\sqrt{3}\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
6=3\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{3\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{3}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{2\times 3\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{3} ਅਤੇ \sqrt{3} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{6\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{6}-18\sqrt{2}}{-30}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{6\sqrt{2}+12\sqrt{3}-3\sqrt{2}\sqrt{2}\sqrt{3}-18\sqrt{2}}{-30}
6=2\times 3 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2\times 3} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2}\sqrt{3} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{6\sqrt{2}+12\sqrt{3}-3\times 2\sqrt{3}-18\sqrt{2}}{-30}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{2} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{6\sqrt{2}+12\sqrt{3}-6\sqrt{3}-18\sqrt{2}}{-30}
-6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{6\sqrt{2}+6\sqrt{3}-18\sqrt{2}}{-30}
6\sqrt{3} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12\sqrt{3} ਅਤੇ -6\sqrt{3} ਨੂੰ ਮਿਲਾਓ।
\frac{-12\sqrt{2}+6\sqrt{3}}{-30}
-12\sqrt{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6\sqrt{2} ਅਤੇ -18\sqrt{2} ਨੂੰ ਮਿਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}