ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. t
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{t\left(t-\frac{2}{t}\right)}
\frac{\frac{1}{t}}{t-\frac{2}{t}} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{1}{t\left(\frac{tt}{t}-\frac{2}{t}\right)}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। t ਨੂੰ \frac{t}{t} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1}{t\times \frac{tt-2}{t}}
ਕਿਉਂਕਿ \frac{tt}{t} ਅਤੇ \frac{2}{t} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{1}{t\times \frac{t^{2}-2}{t}}
tt-2 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{1}{t^{2}-2}
t ਅਤੇ t ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\left(t-\frac{2}{t}\right)})
\frac{\frac{1}{t}}{t-\frac{2}{t}} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\left(\frac{tt}{t}-\frac{2}{t}\right)})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। t ਨੂੰ \frac{t}{t} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\times \frac{tt-2}{t}})
ਕਿਉਂਕਿ \frac{tt}{t} ਅਤੇ \frac{2}{t} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t\times \frac{t^{2}-2}{t}})
tt-2 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t^{2}-2})
t ਅਤੇ t ਨੂੰ ਰੱਦ ਕਰੋ।
-\left(t^{2}-2\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{2}-2)
ਜੇ F ਦੋ ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਾਰਜਾਂ f\left(u\right) ਅਤੇ u=g\left(x\right) ਦਾ ਸੰਯੋਜਨ ਹੈ, ਯਾਂਨੀ, ਜੇF\left(x\right)=f\left(g\left(x\right)\right), F ਦਾ ਡੈਰੀਵੇਟਿਵ u ਦੇ ਸਬੰਧ ਵਿੱਚ f ਦਾ ਡੈਰੀਵੇਟਿਵ ਗੁਣਾ x ਦੇ ਸਬੰਧ ਵਿੱਚ g ਦਾ ਡੈਰੀਵੇਟਿਵ ਹੁੰਦਾ ਹੈ, ਯਾਂਨੀ, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)।
-\left(t^{2}-2\right)^{-2}\times 2t^{2-1}
ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਇਸ ਦੀਆਂ ਸੰਖਿਆਵਾਂ ਦੇ ਡੈਰੀਵੇਟਿਵਸ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ। ਕਿਸੇ ਸਥਿਰ ਸੰਖਿਆ ਦਾ ਡੈਰੀਵੇਟਿਵ 0 ਹੁੰਦਾ ਹੈ। ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
-2t^{1}\left(t^{2}-2\right)^{-2}
ਸਪਸ਼ਟ ਕਰੋ।
-2t\left(t^{2}-2\right)^{-2}
ਕਿਸੇ t, t^{1}=t ਸੰਖਿਆ ਲਈ।