ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਅੰਤਰ ਦੱਸੋ w.r.t. θ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\mathrm{d}}{\mathrm{d}\theta }(\frac{\cos(\theta )}{\sin(\theta )})
ਕੋਟੈਂਜੇਂਟ ਦੀ ਪਰਿਭਾਸ਼ਾ ਵਰਤੋਂ।
\frac{\sin(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\cos(\theta ))-\cos(\theta )\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))}{\left(\sin(\theta )\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{\sin(\theta )\left(-\sin(\theta )\right)-\cos(\theta )\cos(\theta )}{\left(\sin(\theta )\right)^{2}}
sin(\theta ) ਦਾ ਡੈਰੀਵੇਟਿਵ cos(\theta ) ਹੈ, ਅਤੇ cos(\theta ) ਦਾ ਡੈਰੀਵੇਟਿਵ −sin(\theta )ਹੈ।
-\frac{\left(\sin(\theta )\right)^{2}+\left(\cos(\theta )\right)^{2}}{\left(\sin(\theta )\right)^{2}}
ਸਪਸ਼ਟ ਕਰੋ।
-\frac{1}{\left(\sin(\theta )\right)^{2}}
ਪਾਯਥਾਗੋਰਿਅਨ ਆਈਡੇਂਟਿਟੀ ਦੀ ਵਰਤੋਂ ਕਰੋ।
-\left(\csc(\theta )\right)^{2}
ਕੋਸੀਕੈਂਟ ਦੀ ਪਰਿਭਾਸ਼ਾ ਵਰਤੋਂ।