r ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
r=\frac{\left(1-i\right)e^{i\theta }+\left(1+i\right)e^{-i\theta }}{2\pi }
r ਲਈ ਹਲ ਕਰੋ
r=\frac{\sin(\theta )+\cos(\theta )}{\pi }
θ ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
\theta =-i\ln(\left(\frac{1}{2}+\frac{1}{2}i\right)\left(\sqrt{\left(\pi r\right)^{2}-2}+\pi r\right))+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\theta =-i\ln(\frac{\left(-1-i\right)\sqrt{\left(\pi r\right)^{2}-2}+\pi \left(1+i\right)r}{2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\pi r=\cos(\theta )+\sin(\theta )
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\pi r=\sin(\theta )+\cos(\theta )
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\pi r}{\pi }=\frac{\sin(\theta )+\cos(\theta )}{\pi }
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \pi ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
r=\frac{\sin(\theta )+\cos(\theta )}{\pi }
\pi ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \pi ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
\pi r=\cos(\theta )+\sin(\theta )
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\pi r=\sin(\theta )+\cos(\theta )
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\pi r}{\pi }=\frac{\sin(\theta )+\cos(\theta )}{\pi }
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \pi ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
r=\frac{\sin(\theta )+\cos(\theta )}{\pi }
\pi ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \pi ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}