ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{32}{99}\approx -0.323232323
ਫੈਕਟਰ
-\frac{32}{99} = -0.32323232323232326
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{2-\frac{\frac{3}{3}+\frac{4}{3}}{\frac{14}{8}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
1 ਨੂੰ \frac{3}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{2-\frac{\frac{3+4}{3}}{\frac{14}{8}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
ਕਿਉਂਕਿ \frac{3}{3} ਅਤੇ \frac{4}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{2-\frac{\frac{7}{3}}{\frac{14}{8}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
\frac{2-\frac{\frac{7}{3}}{\frac{7}{4}\times 2}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{14}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{2-\frac{\frac{7}{3}}{\frac{7\times 2}{4}}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
\frac{7}{4}\times 2 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{2-\frac{\frac{7}{3}}{\frac{14}{4}}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2-\frac{\frac{7}{3}}{\frac{7}{2}}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{14}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{2-\frac{7}{3}\times \frac{2}{7}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
\frac{7}{3} ਨੂੰ \frac{7}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{7}{3}ਨੂੰ \frac{7}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{2-\frac{7\times 2}{3\times 7}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{7}{3} ਟਾਈਮਸ \frac{2}{7} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{2-\frac{2}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 7 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{6}{3}-\frac{2}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
2 ਨੂੰ \frac{6}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{\frac{6-2}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
ਕਿਉਂਕਿ \frac{6}{3} ਅਤੇ \frac{2}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{4}{3}}{\frac{2^{3}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\frac{4}{3}}{\frac{8-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
2 ਨੂੰ 3 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 8 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{\frac{4}{3}}{\frac{\frac{40}{5}-\frac{3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
8 ਨੂੰ \frac{40}{5} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{\frac{4}{3}}{\frac{\frac{40-3}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
ਕਿਉਂਕਿ \frac{40}{5} ਅਤੇ \frac{3}{5} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\left(\frac{13}{2}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
37 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 40 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\left(\frac{26}{4}-\frac{3}{4}\right)}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
2 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 4 ਹੈ। \frac{13}{2} ਅਤੇ \frac{3}{4} ਨੂੰ 4 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\frac{26-3}{4}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
ਕਿਉਂਕਿ \frac{26}{4} ਅਤੇ \frac{3}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{4}{3}}{\frac{\frac{37}{5}-\frac{23}{4}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
23 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 26 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\frac{4}{3}}{\frac{\frac{148}{20}-\frac{115}{20}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
5 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 20 ਹੈ। \frac{37}{5} ਅਤੇ \frac{23}{4} ਨੂੰ 20 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{\frac{4}{3}}{\frac{\frac{148-115}{20}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
ਕਿਉਂਕਿ \frac{148}{20} ਅਤੇ \frac{115}{20} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{\frac{3}{2}}{\frac{1}{2}}-\frac{17}{5}}}
33 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 148 ਵਿੱਚੋਂ 115 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{3}{2}\times 2-\frac{17}{5}}}
\frac{3}{2} ਨੂੰ \frac{1}{2} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{3}{2}ਨੂੰ \frac{1}{2} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{3-\frac{17}{5}}}
2 ਅਤੇ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{15}{5}-\frac{17}{5}}}
3 ਨੂੰ \frac{15}{5} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{\frac{15-17}{5}}}
ਕਿਉਂਕਿ \frac{15}{5} ਅਤੇ \frac{17}{5} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{4}{3}}{\frac{\frac{33}{20}}{-\frac{2}{5}}}
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 15 ਵਿੱਚੋਂ 17 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\frac{4}{3}}{\frac{33}{20}\left(-\frac{5}{2}\right)}
\frac{33}{20} ਨੂੰ -\frac{2}{5} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{33}{20}ਨੂੰ -\frac{2}{5} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\frac{4}{3}}{\frac{33\left(-5\right)}{20\times 2}}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{33}{20} ਟਾਈਮਸ -\frac{5}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{4}{3}}{\frac{-165}{40}}
\frac{33\left(-5\right)}{20\times 2} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{4}{3}}{-\frac{33}{8}}
5 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-165}{40} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{4}{3}\left(-\frac{8}{33}\right)
\frac{4}{3} ਨੂੰ -\frac{33}{8} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{4}{3}ਨੂੰ -\frac{33}{8} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{4\left(-8\right)}{3\times 33}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{4}{3} ਟਾਈਮਸ -\frac{8}{33} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{-32}{99}
\frac{4\left(-8\right)}{3\times 33} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
-\frac{32}{99}
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-32}{99} ਨੂੰ -\frac{32}{99} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}