ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਫੈਕਟਰ
Tick mark Image

ਸਾਂਝਾ ਕਰੋ

\frac{9-\left(8-\left(\frac{4}{12}+\frac{3}{12}\right)\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
3 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 12 ਹੈ। \frac{1}{3} ਅਤੇ \frac{1}{4} ਨੂੰ 12 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{9-\left(8-\frac{4+3}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
ਕਿਉਂਕਿ \frac{4}{12} ਅਤੇ \frac{3}{12} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{9-\left(8-\frac{7}{12}\times 6\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\frac{9-\left(8-\frac{7\times 6}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
\frac{7}{12}\times 6 ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{9-\left(8-\frac{42}{12}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
42 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ 6 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{9-\left(8-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{42}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{9-\left(\frac{16}{2}-\frac{7}{2}\right)}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
8 ਨੂੰ \frac{16}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{9-\frac{16-7}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
ਕਿਉਂਕਿ \frac{16}{2} ਅਤੇ \frac{7}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{9-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਵਿੱਚੋਂ 7 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\frac{18}{2}-\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
9 ਨੂੰ \frac{18}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{\frac{18-9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
ਕਿਉਂਕਿ \frac{18}{2} ਅਤੇ \frac{9}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{9}{2}}{8-\left(\frac{1}{3}+\frac{1}{2}\right)\times \frac{6}{1}}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 18 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{\frac{9}{2}}{8-\left(\frac{2}{6}+\frac{3}{6}\right)\times \frac{6}{1}}
3 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6 ਹੈ। \frac{1}{3} ਅਤੇ \frac{1}{2} ਨੂੰ 6 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{\frac{9}{2}}{8-\frac{2+3}{6}\times \frac{6}{1}}
ਕਿਉਂਕਿ \frac{2}{6} ਅਤੇ \frac{3}{6} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{\frac{9}{2}}{8-\frac{5}{6}\times \frac{6}{1}}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\frac{\frac{9}{2}}{8-\frac{5}{6}\times 6}
ਇੱਕ ਨਾਲ ਤਕਸੀਮ ਕੀਤੇ ਕਿਸੇ ਵੀ ਅੰਕ ਦਾ ਨਤੀਜਾ ਉਹੀ ਅੰਕ ਨਿਕਲਦਾ ਹੈ।
\frac{\frac{9}{2}}{8-5}
6 ਅਤੇ 6 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{9}{2}}{3}
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{9}{2\times 3}
\frac{\frac{9}{2}}{3} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{9}{6}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{3}{2}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{9}{6} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।