ਮੁਲਾਂਕਣ ਕਰੋ
\frac{17}{15}\approx 1.133333333
ਫੈਕਟਰ
\frac{17}{3 \cdot 5} = 1\frac{2}{15} = 1.1333333333333333
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{6+2}{3}\times \frac{\frac{2\times 4+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
6 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{8}{3}\times \frac{\frac{2\times 4+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\frac{8}{3}\times \frac{\frac{8+1}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{1\times 8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{8+1}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 8 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{2\times 4+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{8+1}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{9}{4}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9}{8}+\frac{18}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
8 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 8 ਹੈ। \frac{9}{8} ਅਤੇ \frac{9}{4} ਨੂੰ 8 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{9+18}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
ਕਿਉਂਕਿ \frac{9}{8} ਅਤੇ \frac{18}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{1\times 2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
27 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਅਤੇ 18 ਨੂੰ ਜੋੜੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{2+1}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{3}{2}}-\frac{1\times 3+2}{3}-\frac{2}{5}
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27}{8}-\frac{12}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
8 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 8 ਹੈ। \frac{27}{8} ਅਤੇ \frac{3}{2} ਨੂੰ 8 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{27-12}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
ਕਿਉਂਕਿ \frac{27}{8} ਅਤੇ \frac{12}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{8}{3}\times \frac{\frac{9}{4}}{\frac{15}{8}}-\frac{1\times 3+2}{3}-\frac{2}{5}
15 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 27 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{8}{3}\times \frac{9}{4}\times \frac{8}{15}-\frac{1\times 3+2}{3}-\frac{2}{5}
\frac{9}{4} ਨੂੰ \frac{15}{8} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{9}{4}ਨੂੰ \frac{15}{8} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{8}{3}\times \frac{9\times 8}{4\times 15}-\frac{1\times 3+2}{3}-\frac{2}{5}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{9}{4} ਟਾਈਮਸ \frac{8}{15} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{8}{3}\times \frac{72}{60}-\frac{1\times 3+2}{3}-\frac{2}{5}
\frac{9\times 8}{4\times 15} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{8}{3}\times \frac{6}{5}-\frac{1\times 3+2}{3}-\frac{2}{5}
12 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{72}{60} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{8\times 6}{3\times 5}-\frac{1\times 3+2}{3}-\frac{2}{5}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{8}{3} ਟਾਈਮਸ \frac{6}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{48}{15}-\frac{1\times 3+2}{3}-\frac{2}{5}
\frac{8\times 6}{3\times 5} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{16}{5}-\frac{1\times 3+2}{3}-\frac{2}{5}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{48}{15} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{16}{5}-\frac{3+2}{3}-\frac{2}{5}
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{16}{5}-\frac{5}{3}-\frac{2}{5}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\frac{48}{15}-\frac{25}{15}-\frac{2}{5}
5 ਅਤੇ 3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 15 ਹੈ। \frac{16}{5} ਅਤੇ \frac{5}{3} ਨੂੰ 15 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{48-25}{15}-\frac{2}{5}
ਕਿਉਂਕਿ \frac{48}{15} ਅਤੇ \frac{25}{15} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{23}{15}-\frac{2}{5}
23 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 48 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{23}{15}-\frac{6}{15}
15 ਅਤੇ 5 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 15 ਹੈ। \frac{23}{15} ਅਤੇ \frac{2}{5} ਨੂੰ 15 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{23-6}{15}
ਕਿਉਂਕਿ \frac{23}{15} ਅਤੇ \frac{6}{15} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{17}{15}
17 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 23 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}