ਮੁਲਾਂਕਣ ਕਰੋ
\frac{7}{4}=1.75
ਫੈਕਟਰ
\frac{7}{2 ^ {2}} = 1\frac{3}{4} = 1.75
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(1+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{2}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\left(1+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\left(\frac{2}{2}+\frac{\sqrt{2}}{2}+\frac{1}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
1 ਨੂੰ \frac{2}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\left(\frac{2+1}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
ਕਿਉਂਕਿ \frac{2}{2} ਅਤੇ \frac{1}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\left(\frac{3}{2}+\frac{\sqrt{2}}{2}\right)\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{3+\sqrt{2}}{2}\left(1-\frac{1}{\sqrt{2}}+\frac{1}{2}\right)
ਕਿਉਂਕਿ \frac{3}{2} ਅਤੇ \frac{\sqrt{2}}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{1}{2}\right)
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{1}{\sqrt{2}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{3+\sqrt{2}}{2}\left(1-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{3+\sqrt{2}}{2}\left(\frac{2}{2}-\frac{\sqrt{2}}{2}+\frac{1}{2}\right)
1 ਨੂੰ \frac{2}{2} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{3+\sqrt{2}}{2}\left(\frac{2+1}{2}-\frac{\sqrt{2}}{2}\right)
ਕਿਉਂਕਿ \frac{2}{2} ਅਤੇ \frac{1}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{3+\sqrt{2}}{2}\left(\frac{3}{2}-\frac{\sqrt{2}}{2}\right)
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\frac{3+\sqrt{2}}{2}\times \frac{3+\sqrt{2}}{2}
ਕਿਉਂਕਿ \frac{3}{2} ਅਤੇ \frac{\sqrt{2}}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\left(\frac{3+\sqrt{2}}{2}\right)^{2}
\left(\frac{3+\sqrt{2}}{2}\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \frac{3+\sqrt{2}}{2} ਅਤੇ \frac{3+\sqrt{2}}{2} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\left(3+\sqrt{2}\right)^{2}}{2^{2}}
\frac{3+\sqrt{2}}{2} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{9+6\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}
\left(3+\sqrt{2}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\frac{9+6\sqrt{2}+2}{2^{2}}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{11+6\sqrt{2}}{2^{2}}
11 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
\frac{11+6\sqrt{2}}{4}
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}