ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{33}{2}=-16.5
ਫੈਕਟਰ
-\frac{33}{2} = -16\frac{1}{2} = -16.5
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(x^{2}-1\right)^{2}-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x+1\right)\left(x-1\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}। 1 ਦਾ ਵਰਗ ਕਰੋ।
\left(x^{2}\right)^{2}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(x^{2}-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{4}-2x^{2}+1-\left(2+x^{2}\right)^{2}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{4}-2x^{2}+1-\left(4+4x^{2}+\left(x^{2}\right)^{2}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
\left(2+x^{2}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{4}-2x^{2}+1-\left(4+4x^{2}+x^{4}\right)+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x^{4}-2x^{2}+1-4-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
4+4x^{2}+x^{4} ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x^{4}-2x^{2}-3-4x^{2}-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{4}-6x^{2}-3-x^{4}+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
-6x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x^{2} ਅਤੇ -4x^{2} ਨੂੰ ਮਿਲਾਓ।
-6x^{2}-3+\frac{3}{2}\left(2x-3\right)\left(2x+3\right)
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{4} ਅਤੇ -x^{4} ਨੂੰ ਮਿਲਾਓ।
-6x^{2}-3+\left(3x-\frac{9}{2}\right)\left(2x+3\right)
\frac{3}{2} ਨੂੰ 2x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-6x^{2}-3+6x^{2}-\frac{27}{2}
3x-\frac{9}{2} ਨੂੰ 2x+3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-3-\frac{27}{2}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -6x^{2} ਅਤੇ 6x^{2} ਨੂੰ ਮਿਲਾਓ।
-\frac{33}{2}
-\frac{33}{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਵਿੱਚੋਂ \frac{27}{2} ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{2\left(\left(x+1\right)\left(x-1\right)\right)^{2}-2\left(2+x^{2}\right)^{2}+3\left(2x-3\right)\left(2x+3\right)}{2}
\frac{1}{2} ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
-\frac{33}{2}
ਸਪਸ਼ਟ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}