ਫੈਕਟਰ
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
ਮੁਲਾਂਕਣ ਕਰੋ
20x^{4}+31x^{2}-9
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
20x^{4}+31x^{2}-9=0
ਅਭਿਵਿਅਕਤੀਆਂ ਦੇ ਫੈਕਟਰ ਬਣਾਉਣ ਲਈ, ਅਜਿਹੇ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਇਹ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
±\frac{9}{20},±\frac{9}{10},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{20},±\frac{3}{10},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{20},±\frac{1}{10},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ -9 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=\frac{1}{2}
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
10x^{3}+5x^{2}+18x+9=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। 20x^{4}+31x^{2}-9 ਨੂੰ 2\left(x-\frac{1}{2}\right)=2x-1 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 10x^{3}+5x^{2}+18x+9 ਨਿਕਲੇ। ਪਰਿਣਾਮਾਂ ਦੇ ਫੈਕਟਰ ਬਣਾਉਣ ਲਈ, ਅਜਿਹੇ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਇਹ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
±\frac{9}{10},±\frac{9}{5},±\frac{9}{2},±9,±\frac{3}{10},±\frac{3}{5},±\frac{3}{2},±3,±\frac{1}{10},±\frac{1}{5},±\frac{1}{2},±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ 9 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=-\frac{1}{2}
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
5x^{2}+9=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। 10x^{3}+5x^{2}+18x+9 ਨੂੰ 2\left(x+\frac{1}{2}\right)=2x+1 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5x^{2}+9 ਨਿਕਲੇ। ਪਰਿਣਾਮਾਂ ਦੇ ਫੈਕਟਰ ਬਣਾਉਣ ਲਈ, ਅਜਿਹੇ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਇਹ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
x=\frac{0±\sqrt{0^{2}-4\times 5\times 9}}{2\times 5}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 5 ਨੂੰ a ਦੇ ਨਾਲ, 0 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 9 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-180}}{10}
ਗਣਨਾਵਾਂ ਕਰੋ।
5x^{2}+9
ਪੋਲੀਨੋਮਿਅਲ 5x^{2}+9 ਦੇ ਫੈਕਟਰ ਨਹੀਂ ਬਣਾਏ ਜਾਂਦੇ ਕਿਉਂਕਿ ਇਸਦੇ ਕੋਈ ਰੈਸ਼ਨਲ ਰੂਟ ਨਹੀਂ ਹਨ।
\left(2x-1\right)\left(2x+1\right)\left(5x^{2}+9\right)
ਹਾਸਲ ਕੀਤੇ ਰੂਟਸ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}