ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
A ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A}{A}+\frac{1}{A}}}}=\frac{64}{27}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2 ਨੂੰ \frac{A}{A} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1}{2+\frac{1}{1+\frac{1}{\frac{2A+1}{A}}}}=\frac{64}{27}
ਕਿਉਂਕਿ \frac{2A}{A} ਅਤੇ \frac{1}{A} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{1}{2+\frac{1}{1+\frac{A}{2A+1}}}=\frac{64}{27}
ਵੇਰੀਏਬਲ A, 0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। 1 ਨੂੰ \frac{2A+1}{A} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{2A+1}{A} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{1}{2+\frac{1}{\frac{2A+1}{2A+1}+\frac{A}{2A+1}}}=\frac{64}{27}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 1 ਨੂੰ \frac{2A+1}{2A+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1}{2+\frac{1}{\frac{2A+1+A}{2A+1}}}=\frac{64}{27}
ਕਿਉਂਕਿ \frac{2A+1}{2A+1} ਅਤੇ \frac{A}{2A+1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{1}{2+\frac{1}{\frac{3A+1}{2A+1}}}=\frac{64}{27}
2A+1+A ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{1}{2+\frac{2A+1}{3A+1}}=\frac{64}{27}
ਵੇਰੀਏਬਲ A, -\frac{1}{2} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। 1 ਨੂੰ \frac{3A+1}{2A+1} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{3A+1}{2A+1} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{1}{\frac{2\left(3A+1\right)}{3A+1}+\frac{2A+1}{3A+1}}=\frac{64}{27}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2 ਨੂੰ \frac{3A+1}{3A+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{1}{\frac{2\left(3A+1\right)+2A+1}{3A+1}}=\frac{64}{27}
ਕਿਉਂਕਿ \frac{2\left(3A+1\right)}{3A+1} ਅਤੇ \frac{2A+1}{3A+1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{1}{\frac{6A+2+2A+1}{3A+1}}=\frac{64}{27}
2\left(3A+1\right)+2A+1 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{1}{\frac{8A+3}{3A+1}}=\frac{64}{27}
6A+2+2A+1 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{3A+1}{8A+3}=\frac{64}{27}
ਵੇਰੀਏਬਲ A, -\frac{1}{3} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। 1 ਨੂੰ \frac{8A+3}{3A+1} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ \frac{8A+3}{3A+1} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
27\left(3A+1\right)=64\left(8A+3\right)
ਵੇਰੀਏਬਲ A, -\frac{3}{8} ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 27\left(8A+3\right), ਜੋ 8A+3,27 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
81A+27=64\left(8A+3\right)
27 ਨੂੰ 3A+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
81A+27=512A+192
64 ਨੂੰ 8A+3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
81A+27-512A=192
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 512A ਨੂੰ ਘਟਾ ਦਿਓ।
-431A+27=192
-431A ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 81A ਅਤੇ -512A ਨੂੰ ਮਿਲਾਓ।
-431A=192-27
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 27 ਨੂੰ ਘਟਾ ਦਿਓ।
-431A=165
165 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 192 ਵਿੱਚੋਂ 27 ਨੂੰ ਘਟਾ ਦਿਓ।
A=\frac{165}{-431}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -431 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
A=-\frac{165}{431}
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{165}{-431} ਨੂੰ -\frac{165}{431} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।