x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x\in 2,-1+\sqrt{3}i,-\sqrt{3}i-1,-1,\frac{-\sqrt{3}i+1}{2},\frac{1+\sqrt{3}i}{2}
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-1
x=2
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
t^{2}-7t-8=0
x^{3} ସ୍ଥାନରେ t ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 1\left(-8\right)}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ -7, ଏବଂ c ପାଇଁ -8 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{7±9}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
t=8 t=-1
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ t=\frac{7±9}{2} ସମାଧାନ କରନ୍ତୁ.
x=-1+\sqrt{3}i x=-\sqrt{3}i-1 x=2 x=-1 x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
ଯେହେତୁ x=t^{3}, ପ୍ରତ୍ୟେକ t ପାଇଁ ସମୀକରଣ ସମାଧାନ କରିବା ଦ୍ୱାରା ସମାଧାନଗୁଡିକ ପ୍ରାପ୍ତ କରାଯାଇଥାଏ.
t^{2}-7t-8=0
x^{3} ସ୍ଥାନରେ t ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 1\left(-8\right)}}{2}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 1, b ପାଇଁ -7, ଏବଂ c ପାଇଁ -8 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{7±9}{2}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
t=8 t=-1
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ t=\frac{7±9}{2} ସମାଧାନ କରନ୍ତୁ.
x=2 x=-1
x=t^{3} ପର ଠାରୁ, ସମାଧାନଗୁଡିକ ପ୍ରତି t ପାଇଁ x=\sqrt[3]{t} ମୂଲ୍ୟାୟନ କରିବା ଦ୍ୱାରା ପ୍ରାପ୍ତ କରାଯାଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}