ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}-14x+14=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 14}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -14, ଏବଂ c ପାଇଁ 14 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 14}}{2}
ବର୍ଗ -14.
x=\frac{-\left(-14\right)±\sqrt{196-56}}{2}
-4 କୁ 14 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-14\right)±\sqrt{140}}{2}
196 କୁ -56 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-14\right)±2\sqrt{35}}{2}
140 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{14±2\sqrt{35}}{2}
-14 ର ବିପରୀତ ହେଉଛି 14.
x=\frac{2\sqrt{35}+14}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{14±2\sqrt{35}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 14 କୁ 2\sqrt{35} ସହ ଯୋଡନ୍ତୁ.
x=\sqrt{35}+7
14+2\sqrt{35} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{14-2\sqrt{35}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{14±2\sqrt{35}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 14 ରୁ 2\sqrt{35} ବିୟୋଗ କରନ୍ତୁ.
x=7-\sqrt{35}
14-2\sqrt{35} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\sqrt{35}+7 x=7-\sqrt{35}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}-14x+14=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}-14x+14-14=-14
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 14 ବିୟୋଗ କରନ୍ତୁ.
x^{2}-14x=-14
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 14 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}-14x+\left(-7\right)^{2}=-14+\left(-7\right)^{2}
-7 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -14 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -7 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-14x+49=-14+49
ବର୍ଗ -7.
x^{2}-14x+49=35
-14 କୁ 49 ସହ ଯୋଡନ୍ତୁ.
\left(x-7\right)^{2}=35
ଗୁଣନୀୟକ x^{2}-14x+49. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-7\right)^{2}}=\sqrt{35}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-7=\sqrt{35} x-7=-\sqrt{35}
ସରଳୀକୃତ କରିବା.
x=\sqrt{35}+7 x=7-\sqrt{35}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 7 ଯୋଡନ୍ତୁ.