x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-15
x=9
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}+6x+9-144=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 144 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+6x-135=0
-135 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 144 ବିୟୋଗ କରନ୍ତୁ.
a+b=6 ab=-135
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}+6x-135 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,135 -3,45 -5,27 -9,15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -135 ପ୍ରଦାନ କରିଥାଏ.
-1+135=134 -3+45=42 -5+27=22 -9+15=6
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-9 b=15
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 6 ପ୍ରଦାନ କରିଥାଏ.
\left(x-9\right)\left(x+15\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
x=9 x=-15
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-9=0 ଏବଂ x+15=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+6x+9-144=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 144 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+6x-135=0
-135 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 144 ବିୟୋଗ କରନ୍ତୁ.
a+b=6 ab=1\left(-135\right)=-135
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx-135 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,135 -3,45 -5,27 -9,15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -135 ପ୍ରଦାନ କରିଥାଏ.
-1+135=134 -3+45=42 -5+27=22 -9+15=6
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-9 b=15
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 6 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-9x\right)+\left(15x-135\right)
\left(x^{2}-9x\right)+\left(15x-135\right) ଭାବରେ x^{2}+6x-135 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-9\right)+15\left(x-9\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 15 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-9\right)\left(x+15\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-9 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=9 x=-15
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-9=0 ଏବଂ x+15=0 ସମାଧାନ କରନ୍ତୁ.
x^{2}+6x+9=144
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}+6x+9-144=144-144
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 144 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+6x+9-144=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 144 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+6x-135=0
9 ରୁ 144 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-6±\sqrt{6^{2}-4\left(-135\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 6, ଏବଂ c ପାଇଁ -135 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36-4\left(-135\right)}}{2}
ବର୍ଗ 6.
x=\frac{-6±\sqrt{36+540}}{2}
-4 କୁ -135 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{576}}{2}
36 କୁ 540 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-6±24}{2}
576 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{18}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±24}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -6 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
x=9
18 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{30}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±24}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -6 ରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
x=-15
-30 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=9 x=-15
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(x+3\right)^{2}=144
ଗୁଣନୀୟକ x^{2}+6x+9. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+3\right)^{2}}=\sqrt{144}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+3=12 x+3=-12
ସରଳୀକୃତ କରିବା.
x=9 x=-15
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}