ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x+1=3x^{2}+1
1 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 0 ଯୋଗ କରନ୍ତୁ.
x+1-3x^{2}=1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x^{2} ବିୟୋଗ କରନ୍ତୁ.
x+1-3x^{2}-1=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x-3x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
x\left(1-3x\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=\frac{1}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ 1-3x=0 ସମାଧାନ କରନ୍ତୁ.
x+1=3x^{2}+1
1 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 0 ଯୋଗ କରନ୍ତୁ.
x+1-3x^{2}=1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x^{2} ବିୟୋଗ କରନ୍ତୁ.
x+1-3x^{2}-1=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x-3x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
-3x^{2}+x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-1±\sqrt{1^{2}}}{2\left(-3\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -3, b ପାଇଁ 1, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±1}{2\left(-3\right)}
1^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-1±1}{-6}
2 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{0}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±1}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -1 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
x=0
0 କୁ -6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{2}{-6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±1}{-6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -1 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{-6} ହ୍ରାସ କରନ୍ତୁ.
x=0 x=\frac{1}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x+1=3x^{2}+1
1 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 0 ଯୋଗ କରନ୍ତୁ.
x+1-3x^{2}=1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3x^{2} ବିୟୋଗ କରନ୍ତୁ.
x-3x^{2}=1-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x-3x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 1 ବିୟୋଗ କରନ୍ତୁ.
-3x^{2}+x=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-3x^{2}+x}{-3}=\frac{0}{-3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{1}{-3}x=\frac{0}{-3}
-3 ଦ୍ୱାରା ବିଭାଜନ କରିବା -3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{1}{3}x=\frac{0}{-3}
1 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{3}x=0
0 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
ଗୁଣନୀୟକ x^{2}-\frac{1}{3}x+\frac{1}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
ସରଳୀକୃତ କରିବା.
x=\frac{1}{3} x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{6} ଯୋଡନ୍ତୁ.