ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
s ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=13 ab=42
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର s^{2}+\left(a+b\right)s+ab=\left(s+a\right)\left(s+b\right) ବ୍ୟବହାର କରି s^{2}+13s+42 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,42 2,21 3,14 6,7
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 42 ପ୍ରଦାନ କରିଥାଏ.
1+42=43 2+21=23 3+14=17 6+7=13
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=6 b=7
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 13 ପ୍ରଦାନ କରିଥାଏ.
\left(s+6\right)\left(s+7\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(s+a\right)\left(s+b\right) ପୁନଃଲେଖନ୍ତୁ.
s=-6 s=-7
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, s+6=0 ଏବଂ s+7=0 ସମାଧାନ କରନ୍ତୁ.
a+b=13 ab=1\times 42=42
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ s^{2}+as+bs+42 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,42 2,21 3,14 6,7
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 42 ପ୍ରଦାନ କରିଥାଏ.
1+42=43 2+21=23 3+14=17 6+7=13
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=6 b=7
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 13 ପ୍ରଦାନ କରିଥାଏ.
\left(s^{2}+6s\right)+\left(7s+42\right)
\left(s^{2}+6s\right)+\left(7s+42\right) ଭାବରେ s^{2}+13s+42 ପୁନଃ ଲେଖନ୍ତୁ.
s\left(s+6\right)+7\left(s+6\right)
ପ୍ରଥମଟିରେ s ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 7 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(s+6\right)\left(s+7\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ s+6 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
s=-6 s=-7
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, s+6=0 ଏବଂ s+7=0 ସମାଧାନ କରନ୍ତୁ.
s^{2}+13s+42=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
s=\frac{-13±\sqrt{13^{2}-4\times 42}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 13, ଏବଂ c ପାଇଁ 42 ପ୍ରତିବଦଳ କରନ୍ତୁ.
s=\frac{-13±\sqrt{169-4\times 42}}{2}
ବର୍ଗ 13.
s=\frac{-13±\sqrt{169-168}}{2}
-4 କୁ 42 ଥର ଗୁଣନ କରନ୍ତୁ.
s=\frac{-13±\sqrt{1}}{2}
169 କୁ -168 ସହ ଯୋଡନ୍ତୁ.
s=\frac{-13±1}{2}
1 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
s=-\frac{12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ s=\frac{-13±1}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -13 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
s=-6
-12 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
s=-\frac{14}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ s=\frac{-13±1}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -13 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
s=-7
-14 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
s=-6 s=-7
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
s^{2}+13s+42=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
s^{2}+13s+42-42=-42
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 42 ବିୟୋଗ କରନ୍ତୁ.
s^{2}+13s=-42
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 42 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
s^{2}+13s+\left(\frac{13}{2}\right)^{2}=-42+\left(\frac{13}{2}\right)^{2}
\frac{13}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 13 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
s^{2}+13s+\frac{169}{4}=-42+\frac{169}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{13}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
s^{2}+13s+\frac{169}{4}=\frac{1}{4}
-42 କୁ \frac{169}{4} ସହ ଯୋଡନ୍ତୁ.
\left(s+\frac{13}{2}\right)^{2}=\frac{1}{4}
ଗୁଣନୀୟକ s^{2}+13s+\frac{169}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(s+\frac{13}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
s+\frac{13}{2}=\frac{1}{2} s+\frac{13}{2}=-\frac{1}{2}
ସରଳୀକୃତ କରିବା.
s=-6 s=-7
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{13}{2} ବିୟୋଗ କରନ୍ତୁ.