ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
f ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

f^{2}-3f=-5
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
f^{2}-3f-\left(-5\right)=-5-\left(-5\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5 ଯୋଡନ୍ତୁ.
f^{2}-3f-\left(-5\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
f^{2}-3f+5=0
0 ରୁ -5 ବିୟୋଗ କରନ୍ତୁ.
f=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -3, ଏବଂ c ପାଇଁ 5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
f=\frac{-\left(-3\right)±\sqrt{9-4\times 5}}{2}
ବର୍ଗ -3.
f=\frac{-\left(-3\right)±\sqrt{9-20}}{2}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
f=\frac{-\left(-3\right)±\sqrt{-11}}{2}
9 କୁ -20 ସହ ଯୋଡନ୍ତୁ.
f=\frac{-\left(-3\right)±\sqrt{11}i}{2}
-11 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
f=\frac{3±\sqrt{11}i}{2}
-3 ର ବିପରୀତ ହେଉଛି 3.
f=\frac{3+\sqrt{11}i}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ f=\frac{3±\sqrt{11}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ i\sqrt{11} ସହ ଯୋଡନ୍ତୁ.
f=\frac{-\sqrt{11}i+3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ f=\frac{3±\sqrt{11}i}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ i\sqrt{11} ବିୟୋଗ କରନ୍ତୁ.
f=\frac{3+\sqrt{11}i}{2} f=\frac{-\sqrt{11}i+3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
f^{2}-3f=-5
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
f^{2}-3f+\left(-\frac{3}{2}\right)^{2}=-5+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
f^{2}-3f+\frac{9}{4}=-5+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
f^{2}-3f+\frac{9}{4}=-\frac{11}{4}
-5 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(f-\frac{3}{2}\right)^{2}=-\frac{11}{4}
ଗୁଣନୀୟକ f^{2}-3f+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(f-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{11}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
f-\frac{3}{2}=\frac{\sqrt{11}i}{2} f-\frac{3}{2}=-\frac{\sqrt{11}i}{2}
ସରଳୀକୃତ କରିବା.
f=\frac{3+\sqrt{11}i}{2} f=\frac{-\sqrt{11}i+3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ଯୋଡନ୍ତୁ.