ମୂଲ୍ୟାୟନ କରିବା
5+b-4b^{2}
ଗୁଣକ
\left(-b-1\right)\left(4b-5\right)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
b^{2}+b-5b^{2}+5
b ପାଇବାକୁ -2b ଏବଂ 3b ସମ୍ମେଳନ କରନ୍ତୁ.
-4b^{2}+b+5
-4b^{2} ପାଇବାକୁ b^{2} ଏବଂ -5b^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
-4b^{2}+b+5
ଗୁଣନ କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
p+q=1 pq=-4\times 5=-20
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି -4b^{2}+pb+qb+5 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. p ଏବଂ q ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,20 -2,10 -4,5
ଯେହେତୁ pq ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ p ଏବଂ q ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ p+q ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -20 ପ୍ରଦାନ କରିଥାଏ.
-1+20=19 -2+10=8 -4+5=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
p=5 q=-4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 1 ପ୍ରଦାନ କରିଥାଏ.
\left(-4b^{2}+5b\right)+\left(-4b+5\right)
\left(-4b^{2}+5b\right)+\left(-4b+5\right) ଭାବରେ -4b^{2}+b+5 ପୁନଃ ଲେଖନ୍ତୁ.
-b\left(4b-5\right)-\left(4b-5\right)
ପ୍ରଥମଟିରେ -b ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(4b-5\right)\left(-b-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 4b-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}