ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(a-3\right)^{2}=\left(\sqrt{a+3}\right)^{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର୍ଅ ବର୍ଗ ବାହାର କରନ୍ତୁ.
a^{2}-6a+9=\left(\sqrt{a+3}\right)^{2}
\left(a-3\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
a^{2}-6a+9=a+3
2 ର \sqrt{a+3} ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ a+3 ପ୍ରାପ୍ତ କରନ୍ତୁ.
a^{2}-6a+9-a=3
ଉଭୟ ପାର୍ଶ୍ୱରୁ a ବିୟୋଗ କରନ୍ତୁ.
a^{2}-7a+9=3
-7a ପାଇବାକୁ -6a ଏବଂ -a ସମ୍ମେଳନ କରନ୍ତୁ.
a^{2}-7a+9-3=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 3 ବିୟୋଗ କରନ୍ତୁ.
a^{2}-7a+6=0
6 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
a+b=-7 ab=6
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) ବ୍ୟବହାର କରି a^{2}-7a+6 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-6 -2,-3
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 6 ପ୍ରଦାନ କରିଥାଏ.
-1-6=-7 -2-3=-5
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-6 b=-1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -7 ପ୍ରଦାନ କରିଥାଏ.
\left(a-6\right)\left(a-1\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(a+a\right)\left(a+b\right) ପୁନଃଲେଖନ୍ତୁ.
a=6 a=1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, a-6=0 ଏବଂ a-1=0 ସମାଧାନ କରନ୍ତୁ.
6-3=\sqrt{6+3}
ସମୀକରଣ a-3=\sqrt{a+3} ରେ a ସ୍ଥାନରେ 6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
3=3
ସରଳୀକୃତ କରନ୍ତୁ. ମୂଲ୍ୟ a=6 ସମୀକରଣ ସନ୍ତୁଷ୍ଟ କରିଛି.
1-3=\sqrt{1+3}
ସମୀକରଣ a-3=\sqrt{a+3} ରେ a ସ୍ଥାନରେ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-2=2
ସରଳୀକୃତ କରନ୍ତୁ. a=1 ମୂଲ୍ୟ ସମୀକରଣକୁ ସନ୍ତୁଷ୍ଟ କରେ ନାହିଁ କାରଣ ବାମ ଏବଂ ଡାହାଣ ପାର୍ଶ୍ୱରେ ବିପରୀତ ଚିହ୍ନ ଥାଏ.
a=6
ସମୀକରଣ a-3=\sqrt{a+3} ଏକ ସ୍ଵତନ୍ତ୍ର ସମାଧାନ ହୋଇଛି.