a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=-3
a=1
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a^{2}+2a+1-4=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
a^{2}+2a-3=0
-3 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
a+b=2 ab=-3
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) ବ୍ୟବହାର କରି a^{2}+2a-3 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
a=-1 b=3
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍ ସମାଧାନ.
\left(a-1\right)\left(a+3\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(a+a\right)\left(a+b\right) ପୁନଃଲେଖନ୍ତୁ.
a=1 a=-3
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, a-1=0 ଏବଂ a+3=0 ସମାଧାନ କରନ୍ତୁ.
a^{2}+2a+1-4=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
a^{2}+2a-3=0
-3 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 4 ବିୟୋଗ କରନ୍ତୁ.
a+b=2 ab=1\left(-3\right)=-3
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ a^{2}+aa+ba-3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
a=-1 b=3
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍ ସମାଧାନ.
\left(a^{2}-a\right)+\left(3a-3\right)
\left(a^{2}-a\right)+\left(3a-3\right) ଭାବରେ a^{2}+2a-3 ପୁନଃ ଲେଖନ୍ତୁ.
a\left(a-1\right)+3\left(a-1\right)
ପ୍ରଥମଟିରେ a ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(a-1\right)\left(a+3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ a-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a=1 a=-3
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, a-1=0 ଏବଂ a+3=0 ସମାଧାନ କରନ୍ତୁ.
a^{2}+2a+1=4
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a^{2}+2a+1-4=4-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
a^{2}+2a+1-4=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 4 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
a^{2}+2a-3=0
1 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
a=\frac{-2±\sqrt{2^{2}-4\left(-3\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
a=\frac{-2±\sqrt{4-4\left(-3\right)}}{2}
ବର୍ଗ 2.
a=\frac{-2±\sqrt{4+12}}{2}
-4 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-2±\sqrt{16}}{2}
4 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-2±4}{2}
16 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=\frac{2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-2±4}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
a=1
2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-\frac{6}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-2±4}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
a=-3
-6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=1 a=-3
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(a+1\right)^{2}=4
ଗୁଣନୀୟକ a^{2}+2a+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(a+1\right)^{2}}=\sqrt{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
a+1=2 a+1=-2
ସରଳୀକୃତ କରିବା.
a=1 a=-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}