ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

n\left(9n+21\right)=0
n ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
n=0 n=-\frac{7}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, n=0 ଏବଂ 9n+21=0 ସମାଧାନ କରନ୍ତୁ.
9n^{2}+21n=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
n=\frac{-21±\sqrt{21^{2}}}{2\times 9}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 9, b ପାଇଁ 21, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
n=\frac{-21±21}{2\times 9}
21^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
n=\frac{-21±21}{18}
2 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{0}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{-21±21}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -21 କୁ 21 ସହ ଯୋଡନ୍ତୁ.
n=0
0 କୁ 18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=-\frac{42}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{-21±21}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -21 ରୁ 21 ବିୟୋଗ କରନ୍ତୁ.
n=-\frac{7}{3}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-42}{18} ହ୍ରାସ କରନ୍ତୁ.
n=0 n=-\frac{7}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
9n^{2}+21n=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{9n^{2}+21n}{9}=\frac{0}{9}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n^{2}+\frac{21}{9}n=\frac{0}{9}
9 ଦ୍ୱାରା ବିଭାଜନ କରିବା 9 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
n^{2}+\frac{7}{3}n=\frac{0}{9}
3 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{21}{9} ହ୍ରାସ କରନ୍ତୁ.
n^{2}+\frac{7}{3}n=0
0 କୁ 9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n^{2}+\frac{7}{3}n+\left(\frac{7}{6}\right)^{2}=\left(\frac{7}{6}\right)^{2}
\frac{7}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{7}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
n^{2}+\frac{7}{3}n+\frac{49}{36}=\frac{49}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(n+\frac{7}{6}\right)^{2}=\frac{49}{36}
ଗୁଣନୀୟକ n^{2}+\frac{7}{3}n+\frac{49}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(n+\frac{7}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
n+\frac{7}{6}=\frac{7}{6} n+\frac{7}{6}=-\frac{7}{6}
ସରଳୀକୃତ କରିବା.
n=0 n=-\frac{7}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{6} ବିୟୋଗ କରନ୍ତୁ.