x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{\sqrt{21}-1}{4}\approx 0.895643924
x=\frac{-\sqrt{21}-1}{4}\approx -1.395643924
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
8x^{2}+2x-5-4x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+2x-5=0
4x^{2} ପାଇବାକୁ 8x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-5\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\times 4\left(-5\right)}}{2\times 4}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4-16\left(-5\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4+80}}{2\times 4}
-16 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{84}}{2\times 4}
4 କୁ 80 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±2\sqrt{21}}{2\times 4}
84 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-2±2\sqrt{21}}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{21}-2}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{21}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{21} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{21}-1}{4}
-2+2\sqrt{21} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{21}-2}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±2\sqrt{21}}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{21} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-\sqrt{21}-1}{4}
-2-2\sqrt{21} କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{21}-1}{4} x=\frac{-\sqrt{21}-1}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
8x^{2}+2x-5-4x^{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x^{2} ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+2x-5=0
4x^{2} ପାଇବାକୁ 8x^{2} ଏବଂ -4x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}+2x=5
ଉଭୟ ପାର୍ଶ୍ଵକୁ 5 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\frac{4x^{2}+2x}{4}=\frac{5}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{2}{4}x=\frac{5}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{1}{2}x=\frac{5}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{5}{4}+\left(\frac{1}{4}\right)^{2}
\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{5}{4}+\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{21}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{16} ସହିତ \frac{5}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{1}{4}\right)^{2}=\frac{21}{16}
ଗୁଣନୀୟକ x^{2}+\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{21}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{4}=\frac{\sqrt{21}}{4} x+\frac{1}{4}=-\frac{\sqrt{21}}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{21}-1}{4} x=\frac{-\sqrt{21}-1}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{4} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}