ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
r ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

r\left(8r-24\right)=0
r ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
r=0 r=3
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, r=0 ଏବଂ 8r-24=0 ସମାଧାନ କରନ୍ତୁ.
8r^{2}-24r=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
r=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 8}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 8, b ପାଇଁ -24, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
r=\frac{-\left(-24\right)±24}{2\times 8}
\left(-24\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
r=\frac{24±24}{2\times 8}
-24 ର ବିପରୀତ ହେଉଛି 24.
r=\frac{24±24}{16}
2 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
r=\frac{48}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ r=\frac{24±24}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 24 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
r=3
48 କୁ 16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
r=\frac{0}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ r=\frac{24±24}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 24 ରୁ 24 ବିୟୋଗ କରନ୍ତୁ.
r=0
0 କୁ 16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
r=3 r=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
8r^{2}-24r=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{8r^{2}-24r}{8}=\frac{0}{8}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
r^{2}+\left(-\frac{24}{8}\right)r=\frac{0}{8}
8 ଦ୍ୱାରା ବିଭାଜନ କରିବା 8 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
r^{2}-3r=\frac{0}{8}
-24 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
r^{2}-3r=0
0 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
r^{2}-3r+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
r^{2}-3r+\frac{9}{4}=\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(r-\frac{3}{2}\right)^{2}=\frac{9}{4}
ଗୁଣନୀୟକ r^{2}-3r+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(r-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
r-\frac{3}{2}=\frac{3}{2} r-\frac{3}{2}=-\frac{3}{2}
ସରଳୀକୃତ କରିବା.
r=3 r=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ଯୋଡନ୍ତୁ.