ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

8x^{2}-6x-4=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8\left(-4\right)}}{2\times 8}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 8, b ପାଇଁ -6, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8\left(-4\right)}}{2\times 8}
ବର୍ଗ -6.
x=\frac{-\left(-6\right)±\sqrt{36-32\left(-4\right)}}{2\times 8}
-4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{36+128}}{2\times 8}
-32 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-6\right)±\sqrt{164}}{2\times 8}
36 କୁ 128 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-6\right)±2\sqrt{41}}{2\times 8}
164 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6±2\sqrt{41}}{2\times 8}
-6 ର ବିପରୀତ ହେଉଛି 6.
x=\frac{6±2\sqrt{41}}{16}
2 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{41}+6}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±2\sqrt{41}}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 6 କୁ 2\sqrt{41} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{41}+3}{8}
6+2\sqrt{41} କୁ 16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{6-2\sqrt{41}}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{6±2\sqrt{41}}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 6 ରୁ 2\sqrt{41} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{3-\sqrt{41}}{8}
6-2\sqrt{41} କୁ 16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
8x^{2}-6x-4=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
8x^{2}-6x-4-\left(-4\right)=-\left(-4\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ଯୋଡନ୍ତୁ.
8x^{2}-6x=-\left(-4\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -4 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
8x^{2}-6x=4
0 ରୁ -4 ବିୟୋଗ କରନ୍ତୁ.
\frac{8x^{2}-6x}{8}=\frac{4}{8}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{6}{8}\right)x=\frac{4}{8}
8 ଦ୍ୱାରା ବିଭାଜନ କରିବା 8 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{3}{4}x=\frac{4}{8}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{8} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{3}{4}x=\frac{1}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{8} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
-\frac{3}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{3}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{64} ସହିତ \frac{1}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
ଗୁଣନୀୟକ x^{2}-\frac{3}{4}x+\frac{9}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{8} ଯୋଡନ୍ତୁ.