ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

1350=\left(75+x\right)\left(18-x\right)
1350 ପ୍ରାପ୍ତ କରିବାକୁ 75 ଏବଂ 18 ଗୁଣନ କରନ୍ତୁ.
1350=1350-57x-x^{2}
75+x କୁ 18-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
1350-57x-x^{2}=1350
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
1350-57x-x^{2}-1350=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1350 ବିୟୋଗ କରନ୍ତୁ.
-57x-x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 1350 ଏବଂ 1350 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-57x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-57\right)±\sqrt{\left(-57\right)^{2}}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ -57, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-57\right)±57}{2\left(-1\right)}
\left(-57\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{57±57}{2\left(-1\right)}
-57 ର ବିପରୀତ ହେଉଛି 57.
x=\frac{57±57}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{114}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{57±57}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 57 କୁ 57 ସହ ଯୋଡନ୍ତୁ.
x=-57
114 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{0}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{57±57}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 57 ରୁ 57 ବିୟୋଗ କରନ୍ତୁ.
x=0
0 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-57 x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
1350=\left(75+x\right)\left(18-x\right)
1350 ପ୍ରାପ୍ତ କରିବାକୁ 75 ଏବଂ 18 ଗୁଣନ କରନ୍ତୁ.
1350=1350-57x-x^{2}
75+x କୁ 18-x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
1350-57x-x^{2}=1350
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-57x-x^{2}=1350-1350
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1350 ବିୟୋଗ କରନ୍ତୁ.
-57x-x^{2}=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 1350 ଏବଂ 1350 ବିୟୋଗ କରନ୍ତୁ.
-x^{2}-57x=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}-57x}{-1}=\frac{0}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{57}{-1}\right)x=\frac{0}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+57x=\frac{0}{-1}
-57 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+57x=0
0 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+57x+\left(\frac{57}{2}\right)^{2}=\left(\frac{57}{2}\right)^{2}
\frac{57}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 57 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{57}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+57x+\frac{3249}{4}=\frac{3249}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{57}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x+\frac{57}{2}\right)^{2}=\frac{3249}{4}
ଗୁଣନୀୟକ x^{2}+57x+\frac{3249}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{57}{2}\right)^{2}}=\sqrt{\frac{3249}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{57}{2}=\frac{57}{2} x+\frac{57}{2}=-\frac{57}{2}
ସରଳୀକୃତ କରିବା.
x=0 x=-57
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{57}{2} ବିୟୋଗ କରନ୍ତୁ.