ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

p+q=22 pq=7\times 3=21
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 7a^{2}+pa+qa+3 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. p ଏବଂ q ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,21 3,7
ଯେହେତୁ pq ଧନାତ୍ମକ ଅଟେ, p ଏବଂ q ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁp+q ଧନାତ୍ମକ ଅଟେ, ଉଭୟ p ଏବଂ q ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 21 ପ୍ରଦାନ କରିଥାଏ.
1+21=22 3+7=10
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
p=1 q=21
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 22 ପ୍ରଦାନ କରିଥାଏ.
\left(7a^{2}+a\right)+\left(21a+3\right)
\left(7a^{2}+a\right)+\left(21a+3\right) ଭାବରେ 7a^{2}+22a+3 ପୁନଃ ଲେଖନ୍ତୁ.
a\left(7a+1\right)+3\left(7a+1\right)
ପ୍ରଥମଟିରେ a ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(7a+1\right)\left(a+3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 7a+1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
7a^{2}+22a+3=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
a=\frac{-22±\sqrt{22^{2}-4\times 7\times 3}}{2\times 7}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a=\frac{-22±\sqrt{484-4\times 7\times 3}}{2\times 7}
ବର୍ଗ 22.
a=\frac{-22±\sqrt{484-28\times 3}}{2\times 7}
-4 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-22±\sqrt{484-84}}{2\times 7}
-28 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-22±\sqrt{400}}{2\times 7}
484 କୁ -84 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-22±20}{2\times 7}
400 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=\frac{-22±20}{14}
2 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
a=-\frac{2}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-22±20}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -22 କୁ 20 ସହ ଯୋଡନ୍ତୁ.
a=-\frac{1}{7}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{14} ହ୍ରାସ କରନ୍ତୁ.
a=-\frac{42}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-22±20}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -22 ରୁ 20 ବିୟୋଗ କରନ୍ତୁ.
a=-3
-42 କୁ 14 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
7a^{2}+22a+3=7\left(a-\left(-\frac{1}{7}\right)\right)\left(a-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -\frac{1}{7} ଏବଂ x_{2} ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
7a^{2}+22a+3=7\left(a+\frac{1}{7}\right)\left(a+3\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
7a^{2}+22a+3=7\times \frac{7a+1}{7}\left(a+3\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା a ସହିତ \frac{1}{7} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
7a^{2}+22a+3=\left(7a+1\right)\left(a+3\right)
7 ଏବଂ 7 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 7 ବାତିଲ୍‌ କରନ୍ତୁ.