x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
6x^{2}-x-40=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 40 ବିୟୋଗ କରନ୍ତୁ.
a+b=-1 ab=6\left(-40\right)=-240
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 6x^{2}+ax+bx-40 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -240 ପ୍ରଦାନ କରିଥାଏ.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-16 b=15
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -1 ପ୍ରଦାନ କରିଥାଏ.
\left(6x^{2}-16x\right)+\left(15x-40\right)
\left(6x^{2}-16x\right)+\left(15x-40\right) ଭାବରେ 6x^{2}-x-40 ପୁନଃ ଲେଖନ୍ତୁ.
2x\left(3x-8\right)+5\left(3x-8\right)
ପ୍ରଥମଟିରେ 2x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3x-8\right)\left(2x+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3x-8 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{8}{3} x=-\frac{5}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 3x-8=0 ଏବଂ 2x+5=0 ସମାଧାନ କରନ୍ତୁ.
6x^{2}-x=40
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
6x^{2}-x-40=40-40
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 40 ବିୟୋଗ କରନ୍ତୁ.
6x^{2}-x-40=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 40 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-40\right)}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ -1, ଏବଂ c ପାଇଁ -40 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-40\right)}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1+960}}{2\times 6}
-24 କୁ -40 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{961}}{2\times 6}
1 କୁ 960 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-1\right)±31}{2\times 6}
961 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{1±31}{2\times 6}
-1 ର ବିପରୀତ ହେଉଛି 1.
x=\frac{1±31}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{32}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±31}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ 31 ସହ ଯୋଡନ୍ତୁ.
x=\frac{8}{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{32}{12} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{30}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±31}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ 31 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{5}{2}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-30}{12} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{8}{3} x=-\frac{5}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6x^{2}-x=40
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{6x^{2}-x}{6}=\frac{40}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{6}x=\frac{40}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{1}{6}x=\frac{20}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{40}{6} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{20}{3}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{12} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{1}{6} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{12} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{20}{3}+\frac{1}{144}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{12} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{961}{144}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{144} ସହିତ \frac{20}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{12}\right)^{2}=\frac{961}{144}
ଗୁଣନୀୟକ x^{2}-\frac{1}{6}x+\frac{1}{144}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{961}{144}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{12}=\frac{31}{12} x-\frac{1}{12}=-\frac{31}{12}
ସରଳୀକୃତ କରିବା.
x=\frac{8}{3} x=-\frac{5}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{12} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}