ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

6x^{2}+18x-19=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-18±\sqrt{18^{2}-4\times 6\left(-19\right)}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ 18, ଏବଂ c ପାଇଁ -19 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-18±\sqrt{324-4\times 6\left(-19\right)}}{2\times 6}
ବର୍ଗ 18.
x=\frac{-18±\sqrt{324-24\left(-19\right)}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-18±\sqrt{324+456}}{2\times 6}
-24 କୁ -19 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-18±\sqrt{780}}{2\times 6}
324 କୁ 456 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-18±2\sqrt{195}}{2\times 6}
780 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-18±2\sqrt{195}}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{195}-18}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-18±2\sqrt{195}}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -18 କୁ 2\sqrt{195} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{195}}{6}-\frac{3}{2}
-18+2\sqrt{195} କୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{195}-18}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-18±2\sqrt{195}}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -18 ରୁ 2\sqrt{195} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
-18-2\sqrt{195} କୁ 12 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{195}}{6}-\frac{3}{2} x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6x^{2}+18x-19=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
6x^{2}+18x-19-\left(-19\right)=-\left(-19\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 19 ଯୋଡନ୍ତୁ.
6x^{2}+18x=-\left(-19\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -19 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
6x^{2}+18x=19
0 ରୁ -19 ବିୟୋଗ କରନ୍ତୁ.
\frac{6x^{2}+18x}{6}=\frac{19}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{18}{6}x=\frac{19}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+3x=\frac{19}{6}
18 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{19}{6}+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+3x+\frac{9}{4}=\frac{19}{6}+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+3x+\frac{9}{4}=\frac{65}{12}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{9}{4} ସହିତ \frac{19}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{3}{2}\right)^{2}=\frac{65}{12}
ଗୁଣନୀୟକ x^{2}+3x+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{65}{12}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{2}=\frac{\sqrt{195}}{6} x+\frac{3}{2}=-\frac{\sqrt{195}}{6}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{195}}{6}-\frac{3}{2} x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ.