ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

5x^{2}-12x-7=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 5\left(-7\right)}}{2\times 5}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 5, b ପାଇଁ -12, ଏବଂ c ପାଇଁ -7 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 5\left(-7\right)}}{2\times 5}
ବର୍ଗ -12.
x=\frac{-\left(-12\right)±\sqrt{144-20\left(-7\right)}}{2\times 5}
-4 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{144+140}}{2\times 5}
-20 କୁ -7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-12\right)±\sqrt{284}}{2\times 5}
144 କୁ 140 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-12\right)±2\sqrt{71}}{2\times 5}
284 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{12±2\sqrt{71}}{2\times 5}
-12 ର ବିପରୀତ ହେଉଛି 12.
x=\frac{12±2\sqrt{71}}{10}
2 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{71}+12}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±2\sqrt{71}}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 12 କୁ 2\sqrt{71} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{71}+6}{5}
12+2\sqrt{71} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{12-2\sqrt{71}}{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{12±2\sqrt{71}}{10} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 12 ରୁ 2\sqrt{71} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{6-\sqrt{71}}{5}
12-2\sqrt{71} କୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{71}+6}{5} x=\frac{6-\sqrt{71}}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
5x^{2}-12x-7=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
5x^{2}-12x-7-\left(-7\right)=-\left(-7\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 7 ଯୋଡନ୍ତୁ.
5x^{2}-12x=-\left(-7\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -7 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
5x^{2}-12x=7
0 ରୁ -7 ବିୟୋଗ କରନ୍ତୁ.
\frac{5x^{2}-12x}{5}=\frac{7}{5}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{12}{5}x=\frac{7}{5}
5 ଦ୍ୱାରା ବିଭାଜନ କରିବା 5 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{12}{5}x+\left(-\frac{6}{5}\right)^{2}=\frac{7}{5}+\left(-\frac{6}{5}\right)^{2}
-\frac{6}{5} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{12}{5} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{6}{5} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{7}{5}+\frac{36}{25}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{6}{5} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{12}{5}x+\frac{36}{25}=\frac{71}{25}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{36}{25} ସହିତ \frac{7}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{6}{5}\right)^{2}=\frac{71}{25}
ଗୁଣନୀୟକ x^{2}-\frac{12}{5}x+\frac{36}{25}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{6}{5}\right)^{2}}=\sqrt{\frac{71}{25}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{6}{5}=\frac{\sqrt{71}}{5} x-\frac{6}{5}=-\frac{\sqrt{71}}{5}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{71}+6}{5} x=\frac{6-\sqrt{71}}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{6}{5} ଯୋଡନ୍ତୁ.