5 = ( 1 + 9.6 \% ) ^ { n }
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
n=\log_{1.096}\left(5\right)\approx 17.557404545
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
n=\frac{i\times 2\pi n_{1}}{\ln(1.096)}+\log_{1.096}\left(5\right)
n_{1}\in \mathrm{Z}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
5=\left(1+\frac{96}{1000}\right)^{n}
ଉଭୟ ଲବ ଏବଂ ହରକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{9.6}{100} ପ୍ରସାରଣ କରନ୍ତୁ.
5=\left(1+\frac{12}{125}\right)^{n}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{96}{1000} ହ୍ରାସ କରନ୍ତୁ.
5=\left(\frac{137}{125}\right)^{n}
\frac{137}{125} ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ \frac{12}{125} ଯୋଗ କରନ୍ତୁ.
\left(\frac{137}{125}\right)^{n}=5
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
\log(\left(\frac{137}{125}\right)^{n})=\log(5)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ଲଗାରିଦିମ୍ ବାହାର କରନ୍ତୁ.
n\log(\frac{137}{125})=\log(5)
ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି ହୋଇଥିବା ଏକ ସଂଖ୍ୟାର ଲଗାରିଦମ୍ ଏହି ସଂଖ୍ୟାର ଲଗାରିଦମ୍ର ପାୱାର୍ ଗୁଣା ହୋଇଥାଏ.
n=\frac{\log(5)}{\log(\frac{137}{125})}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \log(\frac{137}{125}) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=\log_{\frac{137}{125}}\left(5\right)
ମୂଳ-ପରିବର୍ତ୍ତନ କରିବା ସୂତ୍ର ଅନୁସାରେ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}