x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x\in (-\infty,-\frac{\sqrt{3}}{6}-\frac{1}{4}]\cup [\frac{\sqrt{3}}{6}-\frac{1}{4},\infty)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
48x^{2}+24x-1=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-24±\sqrt{24^{2}-4\times 48\left(-1\right)}}{2\times 48}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 48, b ପାଇଁ 24, ଏବଂ c ପାଇଁ -1 କ୍ୱାଡ୍ରାଟିକ୍ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-24±16\sqrt{3}}{96}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=\frac{\sqrt{3}}{6}-\frac{1}{4} x=-\frac{\sqrt{3}}{6}-\frac{1}{4}
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{-24±16\sqrt{3}}{96} ସମାଧାନ କରନ୍ତୁ.
48\left(x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\right)\left(x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\right)\geq 0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\leq 0 x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\leq 0
ଉତ୍ପାଦ ≥0 ହେବା ପାଇଁ, x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right) ଏବଂ x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right) ଉଭୟ ≤0 କିମ୍ବା ଉଭୟ ≥0 ହେବା ଦରକାର. ଯେତେବେଳେ x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right) ଏବଂ x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right) ଉଭୟ ≤0 ରହିଥାଏ କେସ୍ ବିଚାର କରନ୍ତୁ.
x\leq -\frac{\sqrt{3}}{6}-\frac{1}{4}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x\leq -\frac{\sqrt{3}}{6}-\frac{1}{4}.
x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\geq 0 x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right)\geq 0
ଯେତେବେଳେ x-\left(\frac{\sqrt{3}}{6}-\frac{1}{4}\right) ଏବଂ x-\left(-\frac{\sqrt{3}}{6}-\frac{1}{4}\right) ଉଭୟ ≥0 ରହିଥାଏ କେସ୍ ବିଚାର କରନ୍ତୁ.
x\geq \frac{\sqrt{3}}{6}-\frac{1}{4}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x\geq \frac{\sqrt{3}}{6}-\frac{1}{4}.
x\leq -\frac{\sqrt{3}}{6}-\frac{1}{4}\text{; }x\geq \frac{\sqrt{3}}{6}-\frac{1}{4}
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}