ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4x^{2}+28x+53=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-28±\sqrt{28^{2}-4\times 4\times 53}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 28, ଏବଂ c ପାଇଁ 53 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-4\times 4\times 53}}{2\times 4}
ବର୍ଗ 28.
x=\frac{-28±\sqrt{784-16\times 53}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{784-848}}{2\times 4}
-16 କୁ 53 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28±\sqrt{-64}}{2\times 4}
784 କୁ -848 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-28±8i}{2\times 4}
-64 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-28±8i}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-28+8i}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-28±8i}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -28 କୁ 8i ସହ ଯୋଡନ୍ତୁ.
x=-\frac{7}{2}+i
-28+8i କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-28-8i}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-28±8i}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -28 ରୁ 8i ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{7}{2}-i
-28-8i କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{7}{2}+i x=-\frac{7}{2}-i
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}+28x+53=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
4x^{2}+28x+53-53=-53
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 53 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+28x=-53
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 53 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{4x^{2}+28x}{4}=-\frac{53}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{28}{4}x=-\frac{53}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+7x=-\frac{53}{4}
28 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=-\frac{53}{4}+\left(\frac{7}{2}\right)^{2}
\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+7x+\frac{49}{4}=\frac{-53+49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+7x+\frac{49}{4}=-1
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{49}{4} ସହିତ -\frac{53}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{7}{2}\right)^{2}=-1
ଗୁଣନୀୟକ x^{2}+7x+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{-1}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{2}=i x+\frac{7}{2}=-i
ସରଳୀକୃତ କରିବା.
x=-\frac{7}{2}+i x=-\frac{7}{2}-i
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{2} ବିୟୋଗ କରନ୍ତୁ.