x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-2
x=1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4x^{2}+8x-4x=8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+4x=8
4x ପାଇବାକୁ 8x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}+4x-8=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-2=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=1 ab=1\left(-2\right)=-2
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx-2 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
a=-1 b=2
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍ ସମାଧାନ.
\left(x^{2}-x\right)+\left(2x-2\right)
\left(x^{2}-x\right)+\left(2x-2\right) ଭାବରେ x^{2}+x-2 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-1\right)+2\left(x-1\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-1\right)\left(x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=1 x=-2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-1=0 ଏବଂ x+2=0 ସମାଧାନ କରନ୍ତୁ.
4x^{2}+8x-4x=8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+4x=8
4x ପାଇବାକୁ 8x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}+4x-8=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 4, ଏବଂ c ପାଇଁ -8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
ବର୍ଗ 4.
x=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16+128}}{2\times 4}
-16 କୁ -8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{144}}{2\times 4}
16 କୁ 128 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-4±12}{2\times 4}
144 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-4±12}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{8}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±12}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -4 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
x=1
8 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{16}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±12}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -4 ରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
x=-2
-16 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=1 x=-2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x^{2}+8x-4x=8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4x ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+4x=8
4x ପାଇବାକୁ 8x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{4x^{2}+4x}{4}=\frac{8}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{4}{4}x=\frac{8}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+x=\frac{8}{4}
4 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+x=2
8 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
2 କୁ \frac{1}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
ଗୁଣନୀୟକ x^{2}+x+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
ସରଳୀକୃତ କରିବା.
x=1 x=-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}