ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}-3x=2-2x
3x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}-3x-2=-2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
3x^{2}-3x-2+2x=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
3x^{2}-x-2=0
-x ପାଇବାକୁ -3x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ -1, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
-12 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
1 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-1\right)±5}{2\times 3}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{1±5}{2\times 3}
-1 ର ବିପରୀତ ହେଉଛି 1.
x=\frac{1±5}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{6}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±5}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=1
6 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{4}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±5}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{2}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-4}{6} ହ୍ରାସ କରନ୍ତୁ.
x=1 x=-\frac{2}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}-3x=2-2x
3x କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x^{2}-3x+2x=2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2x ଯୋଡନ୍ତୁ.
3x^{2}-x=2
-x ପାଇବାକୁ -3x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{3x^{2}-x}{3}=\frac{2}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{3}x=\frac{2}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
-\frac{1}{6} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{6} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{6} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{36} ସହିତ \frac{2}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
ଗୁଣନୀୟକ x^{2}-\frac{1}{3}x+\frac{1}{36}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
ସରଳୀକୃତ କରିବା.
x=1 x=-\frac{2}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{6} ଯୋଡନ୍ତୁ.