ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3x^{2}-7x-6+3x=-2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
3x^{2}-4x-6=-2
-4x ପାଇବାକୁ -7x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
3x^{2}-4x-6+2=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
3x^{2}-4x-4=0
-4 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
a+b=-4 ab=3\left(-4\right)=-12
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 3x^{2}+ax+bx-4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-12 2,-6 3,-4
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -12 ପ୍ରଦାନ କରିଥାଏ.
1-12=-11 2-6=-4 3-4=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-6 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -4 ପ୍ରଦାନ କରିଥାଏ.
\left(3x^{2}-6x\right)+\left(2x-4\right)
\left(3x^{2}-6x\right)+\left(2x-4\right) ଭାବରେ 3x^{2}-4x-4 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(x-2\right)+2\left(x-2\right)
ପ୍ରଥମଟିରେ 3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-2\right)\left(3x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=2 x=-\frac{2}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-2=0 ଏବଂ 3x+2=0 ସମାଧାନ କରନ୍ତୁ.
3x^{2}-7x-6+3x=-2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
3x^{2}-4x-6=-2
-4x ପାଇବାକୁ -7x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
3x^{2}-4x-6+2=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
3x^{2}-4x-4=0
-4 ପ୍ରାପ୍ତ କରିବାକୁ -6 ଏବଂ 2 ଯୋଗ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 3, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-4\right)}}{2\times 3}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-12\left(-4\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 3}
-12 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 3}
16 କୁ 48 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±8}{2\times 3}
64 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±8}{2\times 3}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±8}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{12}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±8}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 8 ସହ ଯୋଡନ୍ତୁ.
x=2
12 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{4}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±8}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{2}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-4}{6} ହ୍ରାସ କରନ୍ତୁ.
x=2 x=-\frac{2}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3x^{2}-7x-6+3x=-2
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3x ଯୋଡନ୍ତୁ.
3x^{2}-4x-6=-2
-4x ପାଇବାକୁ -7x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
3x^{2}-4x=-2+6
ଉଭୟ ପାର୍ଶ୍ଵକୁ 6 ଯୋଡନ୍ତୁ.
3x^{2}-4x=4
4 ପ୍ରାପ୍ତ କରିବାକୁ -2 ଏବଂ 6 ଯୋଗ କରନ୍ତୁ.
\frac{3x^{2}-4x}{3}=\frac{4}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{4}{3}x=\frac{4}{3}
3 ଦ୍ୱାରା ବିଭାଜନ କରିବା 3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{4}{3}x+\left(-\frac{2}{3}\right)^{2}=\frac{4}{3}+\left(-\frac{2}{3}\right)^{2}
-\frac{2}{3} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{4}{3} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{2}{3} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{4}{3}+\frac{4}{9}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{2}{3} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{4}{3}x+\frac{4}{9}=\frac{16}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{4}{9} ସହିତ \frac{4}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{2}{3}\right)^{2}=\frac{16}{9}
ଗୁଣନୀୟକ x^{2}-\frac{4}{3}x+\frac{4}{9}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{2}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{2}{3}=\frac{4}{3} x-\frac{2}{3}=-\frac{4}{3}
ସରଳୀକୃତ କରିବା.
x=2 x=-\frac{2}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{2}{3} ଯୋଡନ୍ତୁ.