ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2019x^{2}-2020=x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2020 ବିୟୋଗ କରନ୍ତୁ.
2019x^{2}-2020-x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
2019x^{2}-x-2020=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-1 ab=2019\left(-2020\right)=-4078380
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 2019x^{2}+ax+bx-2020 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-4078380 2,-2039190 3,-1359460 4,-1019595 5,-815676 6,-679730 10,-407838 12,-339865 15,-271892 20,-203919 30,-135946 60,-67973 101,-40380 202,-20190 303,-13460 404,-10095 505,-8076 606,-6730 673,-6060 1010,-4038 1212,-3365 1346,-3030 1515,-2692 2019,-2020
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -4078380 ପ୍ରଦାନ କରିଥାଏ.
1-4078380=-4078379 2-2039190=-2039188 3-1359460=-1359457 4-1019595=-1019591 5-815676=-815671 6-679730=-679724 10-407838=-407828 12-339865=-339853 15-271892=-271877 20-203919=-203899 30-135946=-135916 60-67973=-67913 101-40380=-40279 202-20190=-19988 303-13460=-13157 404-10095=-9691 505-8076=-7571 606-6730=-6124 673-6060=-5387 1010-4038=-3028 1212-3365=-2153 1346-3030=-1684 1515-2692=-1177 2019-2020=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-2020 b=2019
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -1 ପ୍ରଦାନ କରିଥାଏ.
\left(2019x^{2}-2020x\right)+\left(2019x-2020\right)
\left(2019x^{2}-2020x\right)+\left(2019x-2020\right) ଭାବରେ 2019x^{2}-x-2020 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(2019x-2020\right)+2019x-2020
2019x^{2}-2020xରେ x ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2019x-2020\right)\left(x+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2019x-2020 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{2020}{2019} x=-1
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2019x-2020=0 ଏବଂ x+1=0 ସମାଧାନ କରନ୍ତୁ.
2019x^{2}-2020=x
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2020 ବିୟୋଗ କରନ୍ତୁ.
2019x^{2}-2020-x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
2019x^{2}-x-2020=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2019\left(-2020\right)}}{2\times 2019}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2019, b ପାଇଁ -1, ଏବଂ c ପାଇଁ -2020 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1-8076\left(-2020\right)}}{2\times 2019}
-4 କୁ 2019 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{1+16313520}}{2\times 2019}
-8076 କୁ -2020 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-1\right)±\sqrt{16313521}}{2\times 2019}
1 କୁ 16313520 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-1\right)±4039}{2\times 2019}
16313521 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{1±4039}{2\times 2019}
-1 ର ବିପରୀତ ହେଉଛି 1.
x=\frac{1±4039}{4038}
2 କୁ 2019 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4040}{4038}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±4039}{4038} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ 4039 ସହ ଯୋଡନ୍ତୁ.
x=\frac{2020}{2019}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4040}{4038} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{4038}{4038}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{1±4039}{4038} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ 4039 ବିୟୋଗ କରନ୍ତୁ.
x=-1
-4038 କୁ 4038 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2020}{2019} x=-1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2019x^{2}-x=2020
ଉଭୟ ପାର୍ଶ୍ୱରୁ x ବିୟୋଗ କରନ୍ତୁ.
\frac{2019x^{2}-x}{2019}=\frac{2020}{2019}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2019 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{1}{2019}x=\frac{2020}{2019}
2019 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2019 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{1}{2019}x+\left(-\frac{1}{4038}\right)^{2}=\frac{2020}{2019}+\left(-\frac{1}{4038}\right)^{2}
-\frac{1}{4038} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{2019} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{4038} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{1}{2019}x+\frac{1}{16305444}=\frac{2020}{2019}+\frac{1}{16305444}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{4038} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{1}{2019}x+\frac{1}{16305444}=\frac{16313521}{16305444}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{16305444} ସହିତ \frac{2020}{2019} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{1}{4038}\right)^{2}=\frac{16313521}{16305444}
ଗୁଣନୀୟକ x^{2}-\frac{1}{2019}x+\frac{1}{16305444}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{1}{4038}\right)^{2}}=\sqrt{\frac{16313521}{16305444}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{1}{4038}=\frac{4039}{4038} x-\frac{1}{4038}=-\frac{4039}{4038}
ସରଳୀକୃତ କରିବା.
x=\frac{2020}{2019} x=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4038} ଯୋଡନ୍ତୁ.