x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{\sqrt{11} + 5}{2} \approx 4.158312395
x=\frac{5-\sqrt{11}}{2}\approx 0.841687605
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2x^{2}-10x+7=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 7}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -10, ଏବଂ c ପାଇଁ 7 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 7}}{2\times 2}
ବର୍ଗ -10.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 7}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{100-56}}{2\times 2}
-8 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-10\right)±\sqrt{44}}{2\times 2}
100 କୁ -56 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-10\right)±2\sqrt{11}}{2\times 2}
44 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{10±2\sqrt{11}}{2\times 2}
-10 ର ବିପରୀତ ହେଉଛି 10.
x=\frac{10±2\sqrt{11}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{11}+10}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±2\sqrt{11}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 10 କୁ 2\sqrt{11} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{11}+5}{2}
10+2\sqrt{11} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{10-2\sqrt{11}}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{10±2\sqrt{11}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 10 ରୁ 2\sqrt{11} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{5-\sqrt{11}}{2}
10-2\sqrt{11} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{11}+5}{2} x=\frac{5-\sqrt{11}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2x^{2}-10x+7=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
2x^{2}-10x+7-7=-7
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 7 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-10x=-7
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 7 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{2x^{2}-10x}{2}=-\frac{7}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{10}{2}\right)x=-\frac{7}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-5x=-\frac{7}{2}
-10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{7}{2}+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-5x+\frac{25}{4}=-\frac{7}{2}+\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-5x+\frac{25}{4}=\frac{11}{4}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{4} ସହିତ -\frac{7}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{5}{2}\right)^{2}=\frac{11}{4}
ଗୁଣନୀୟକ x^{2}-5x+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{2}=\frac{\sqrt{11}}{2} x-\frac{5}{2}=-\frac{\sqrt{11}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{11}+5}{2} x=\frac{5-\sqrt{11}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}