ମୂଲ୍ୟାୟନ କରିବା
2\left(x+4\right)\left(6x^{2}+x+2\right)
ଗୁଣକ
2\left(x+4\right)\left(6x^{2}+x+2\right)
ଗ୍ରାଫ୍
କ୍ୱିଜ୍
Polynomial
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
2 x ^ { 2 } + 16 x + 32 + 12 x ^ { 3 } + 48 x ^ { 2 } - 4 x - 16
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
50x^{2}+16x+32+12x^{3}-4x-16
50x^{2} ପାଇବାକୁ 2x^{2} ଏବଂ 48x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
50x^{2}+12x+32+12x^{3}-16
12x ପାଇବାକୁ 16x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
50x^{2}+12x+16+12x^{3}
16 ପ୍ରାପ୍ତ କରିବାକୁ 32 ଏବଂ 16 ବିୟୋଗ କରନ୍ତୁ.
2\left(25x^{2}+6x+8+6x^{3}\right)
2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
6x^{3}+25x^{2}+6x+8
x^{2}+8x+16+6x^{3}+24x^{2}-2x-8କୁ ବିବେଚନା କରନ୍ତୁ. ଗୁଣନ କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(x+4\right)\left(6x^{2}+x+2\right)
6x^{3}+25x^{2}+6x+8କୁ ବିବେଚନା କରନ୍ତୁ. ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍ 8 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 6କୁ ବିଭାଜିତ କରିଥାଏ. ଏହିଭଳି ଗୋଟିଏ ରୁଟ୍ ହେଉଛି -4. x+4 ଦ୍ୱାରା ବିଭାଜିତ କରିବା ଦ୍ୱାରା ପଲିନୋମିଆଲର ଗୁଣକ ବାହାର କରନ୍ତୁ.
2\left(x+4\right)\left(6x^{2}+x+2\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ. ପଲିନୋମିଆଲ 6x^{2}+x+2 ଫ୍ୟାକ୍ଟର ହୋଇନାହିଁ ଯେହେତୁ ଏଥିରେ କୌଣସି ରେସନାଲ ରୁଟ୍ ନାହିଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}