ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

t\left(2t-\frac{7}{2}\right)=0
t ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
t=0 t=\frac{7}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, t=0 ଏବଂ 2t-\frac{7}{2}=0 ସମାଧାନ କରନ୍ତୁ.
2t^{2}-\frac{7}{2}t=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-\left(-\frac{7}{2}\right)±\sqrt{\left(-\frac{7}{2}\right)^{2}}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -\frac{7}{2}, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-\left(-\frac{7}{2}\right)±\frac{7}{2}}{2\times 2}
\left(-\frac{7}{2}\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{\frac{7}{2}±\frac{7}{2}}{2\times 2}
-\frac{7}{2} ର ବିପରୀତ ହେଉଛି \frac{7}{2}.
t=\frac{\frac{7}{2}±\frac{7}{2}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{\frac{7}{2}±\frac{7}{2}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{7}{2} ସହିତ \frac{7}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
t=\frac{0}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{\frac{7}{2}±\frac{7}{2}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{7}{2} ରୁ \frac{7}{2} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
t=0
0 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=\frac{7}{4} t=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2t^{2}-\frac{7}{2}t=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{2t^{2}-\frac{7}{2}t}{2}=\frac{0}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+\left(-\frac{\frac{7}{2}}{2}\right)t=\frac{0}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
t^{2}-\frac{7}{4}t=\frac{0}{2}
-\frac{7}{2} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-\frac{7}{4}t=0
0 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-\frac{7}{4}t+\left(-\frac{7}{8}\right)^{2}=\left(-\frac{7}{8}\right)^{2}
-\frac{7}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{7}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}-\frac{7}{4}t+\frac{49}{64}=\frac{49}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(t-\frac{7}{8}\right)^{2}=\frac{49}{64}
ଗୁଣନୀୟକ t^{2}-\frac{7}{4}t+\frac{49}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t-\frac{7}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t-\frac{7}{8}=\frac{7}{8} t-\frac{7}{8}=-\frac{7}{8}
ସରଳୀକୃତ କରିବା.
t=\frac{7}{4} t=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{8} ଯୋଡନ୍ତୁ.