ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2m^{2}+2m=5
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
2m^{2}+2m-5=5-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
2m^{2}+2m-5=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
m=\frac{-2±\sqrt{2^{2}-4\times 2\left(-5\right)}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
m=\frac{-2±\sqrt{4-4\times 2\left(-5\right)}}{2\times 2}
ବର୍ଗ 2.
m=\frac{-2±\sqrt{4-8\left(-5\right)}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
m=\frac{-2±\sqrt{4+40}}{2\times 2}
-8 କୁ -5 ଥର ଗୁଣନ କରନ୍ତୁ.
m=\frac{-2±\sqrt{44}}{2\times 2}
4 କୁ 40 ସହ ଯୋଡନ୍ତୁ.
m=\frac{-2±2\sqrt{11}}{2\times 2}
44 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
m=\frac{-2±2\sqrt{11}}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
m=\frac{2\sqrt{11}-2}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ m=\frac{-2±2\sqrt{11}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 2\sqrt{11} ସହ ଯୋଡନ୍ତୁ.
m=\frac{\sqrt{11}-1}{2}
-2+2\sqrt{11} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{-2\sqrt{11}-2}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ m=\frac{-2±2\sqrt{11}}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 2\sqrt{11} ବିୟୋଗ କରନ୍ତୁ.
m=\frac{-\sqrt{11}-1}{2}
-2-2\sqrt{11} କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{\sqrt{11}-1}{2} m=\frac{-\sqrt{11}-1}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2m^{2}+2m=5
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{2m^{2}+2m}{2}=\frac{5}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m^{2}+\frac{2}{2}m=\frac{5}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
m^{2}+m=\frac{5}{2}
2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m^{2}+m+\left(\frac{1}{2}\right)^{2}=\frac{5}{2}+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
m^{2}+m+\frac{1}{4}=\frac{5}{2}+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
m^{2}+m+\frac{1}{4}=\frac{11}{4}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{4} ସହିତ \frac{5}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(m+\frac{1}{2}\right)^{2}=\frac{11}{4}
ଗୁଣନୀୟକ m^{2}+m+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(m+\frac{1}{2}\right)^{2}}=\sqrt{\frac{11}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
m+\frac{1}{2}=\frac{\sqrt{11}}{2} m+\frac{1}{2}=-\frac{\sqrt{11}}{2}
ସରଳୀକୃତ କରିବା.
m=\frac{\sqrt{11}-1}{2} m=\frac{-\sqrt{11}-1}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2} ବିୟୋଗ କରନ୍ତୁ.